Skip to main content

FARGO: A Joint Framework for FAZ and RV Segmentation from OCTA Images

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12970))

Included in the following conference series:

Abstract

Optical coherence tomography angiography (OCTA) is a recent advance in ophthalmic imaging, which provides detailed visualization of two important anatomical landmarks, namely foveal avascular zone (FAZ) and retinal vessels (RV). Studies have shown that both FAZ and RV play significant roles in the diagnoses of various eye-related diseases. Therefore, accurate segmentation of FAZ and RV from OCTA images is highly in need. However, due to complicated microstructures and inhomogeneous image quality, there is still room for improvement in existing methods. In this paper, we propose a novel and efficient deep learning framework containing two subnetworks for simultaneously segmenting FAZ and RV from en-face OCTA images, named FARGO. For FAZ, we use RV segmentation as an auxiliary task, which may provide supplementary information especially for low-contrast and low-quality OCTA images. A ResNeSt based encoder with split attention and ImageNet pretraining is employed for FAZ segmentation. For RV, we introduce a coarse-to-fine cascaded network composed of a main segmentation model and several small ones for progressive refining. Spatial attention and channel attention modules are utilized for adaptively integrating local features with global dependencies. Through extensive experiments, FARGO is found to yield outstanding segmentation results for both FAZ and RV on the OCTA-500 dataset, performing even better than methods that utilize 3D OCTA volume as an extra input.

L. Peng and L. Lin contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abràmoff, M.D., Garvin, M.K., Sonka, M.: Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 3, 169–208 (2010)

    Article  Google Scholar 

  2. Ang, M., et al.: Optical coherence tomography angiography: a review of current and future clinical applications. Graefes Arch. Clin. Exp. Ophthalmol. 256(2), 237–245 (2018). https://doi.org/10.1007/s00417-017-3896-2

    Article  Google Scholar 

  3. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  4. Cheng, K.K., et al.: Macular vessel density, branching complexity and foveal avascular zone size in normal tension glaucoma. Sci. Rep. 11(1), 1–9 (2021)

    Article  Google Scholar 

  5. Deng, W., Tamplin, M.R., Grumbach, I.M., Kardon, R.H., Garvin, M.K.: Region-based segmentation of capillary density in optical coherence tomography angiography. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds.) OMIA 2019. LNCS, vol. 11855, pp. 18–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32956-3_3

    Chapter  Google Scholar 

  6. Díaz, M., Novo, J., Cutrín, P., Gómez-Ulla, F., Penedo, M.G., Ortega, M.: Automatic segmentation of the foveal avascular zone in ophthalmological OCT-A images. PLoS ONE 14(2), e0212364 (2019)

    Article  Google Scholar 

  7. Eladawi, N., et al.: Automatic blood vessels segmentation based on different retinal maps from OCTA scans. Comput. Biol. Med. 89, 150–161 (2017)

    Article  Google Scholar 

  8. Fu, H., Xu, Y., Lin, S., Kee Wong, D.W., Liu, J.: DeepVessel: retinal vessel segmentation via deep learning and conditional random field. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 132–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_16

    Chapter  Google Scholar 

  9. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  10. Klein, R., Myers, C.E., Lee, K.E., Gangnon, R., Klein, B.E.: Changes in retinal vessel diameter and incidence and progression of diabetic retinopathy. Arch. Ophthalmol. 130(6), 749–755 (2012)

    Article  Google Scholar 

  11. Koskosas, A., Muldrew, K., Patton, W., Topouzis, F., Chakravarthy, U.: Foveal avascular zone (FAZ) area in aging and age related macular degeneration (AMD). Investig. Ophthalmol. Vis. Sci. 50(13), 948 (2009)

    Google Scholar 

  12. Li, L., Verma, M., Nakashima, Y., Nagahara, H., Kawasaki, R.: IterNet: retinal image segmentation utilizing structural redundancy in vessel networks. In: The IEEE Winter Conference on Applications of Computer Vision (WACV), March 2020

    Google Scholar 

  13. Li, M., et al.: Image projection network: 3d to 2d image segmentation in OCTA images. IEEE Trans. Med. Imaging 39(11), 3343–3354 (2020)

    Article  Google Scholar 

  14. Li, M., et al.: IPN-V2 and OCTA-500: methodology and dataset for retinal image segmentation. arXiv preprint arXiv:2012.07261 (2020)

  15. Liu, H., Wong, D.W.K., Fu, H., Xu, Y., Liu, J.: DeepAMD: detect early age-related macular degeneration by applying deep learning in a multiple instance learning framework. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11365, pp. 625–640. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20873-8_40

    Chapter  Google Scholar 

  16. Ma, Y., et al.: ROSE: a retinal OCT-angiography vessel segmentation dataset and new model. IEEE Trans. Med. Imaging 40(3), 928–939 (2020)

    Article  Google Scholar 

  17. Mou, L., et al.: CS-Net: channel and spatial attention network for curvilinear structure segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 721–730. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_80

    Chapter  Google Scholar 

  18. Mou, L., et al.: CS2-Net: deep learning segmentation of curvilinear structures in medical imaging. Med. Image Anal. 67, 101874 (2021)

    Article  Google Scholar 

  19. Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P., Zheng, Y.: Convolutional neural networks for diabetic retinopathy. Proc. Comput. Sci. 90, 200–205 (2016)

    Article  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Spaide, R.F., Fujimoto, J.G., Waheed, N.K., Sadda, S.R., Staurenghi, G.: Optical coherence tomography angiography. Prog. Retin. Eye Res. 64, 1–55 (2018)

    Article  Google Scholar 

  22. Yip, V.C., et al.: Optical coherence tomography angiography of optic disc and macula vessel density in glaucoma and healthy eyes. J. Glaucoma 28(1), 80–87 (2019)

    Google Scholar 

  23. Zhang, H., et al.: RESNest: split-attention networks. arXiv preprint arXiv:2004.08955 (2020)

  24. Zhang, S., et al.: Attention guided network for retinal image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 797–805. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_88

    Chapter  Google Scholar 

  25. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  26. Zheng, Y., Gandhi, J.S., Stangos, A.N., Campa, C., Broadbent, D.M., Harding, S.P.: Automated segmentation of foveal avascular zone in fundus fluorescein angiography. Invest. Ophthalmol. Vis. Sci. 51(7), 3653–3659 (2010)

    Article  Google Scholar 

  27. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS 2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, L., Lin, L., Cheng, P., Wang, Z., Tang, X. (2021). FARGO: A Joint Framework for FAZ and RV Segmentation from OCTA Images. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2021. Lecture Notes in Computer Science(), vol 12970. Springer, Cham. https://doi.org/10.1007/978-3-030-87000-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87000-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86999-1

  • Online ISBN: 978-3-030-87000-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics