Abstract
Optical coherence tomography angiography (OCTA) is a recent advance in ophthalmic imaging, which provides detailed visualization of two important anatomical landmarks, namely foveal avascular zone (FAZ) and retinal vessels (RV). Studies have shown that both FAZ and RV play significant roles in the diagnoses of various eye-related diseases. Therefore, accurate segmentation of FAZ and RV from OCTA images is highly in need. However, due to complicated microstructures and inhomogeneous image quality, there is still room for improvement in existing methods. In this paper, we propose a novel and efficient deep learning framework containing two subnetworks for simultaneously segmenting FAZ and RV from en-face OCTA images, named FARGO. For FAZ, we use RV segmentation as an auxiliary task, which may provide supplementary information especially for low-contrast and low-quality OCTA images. A ResNeSt based encoder with split attention and ImageNet pretraining is employed for FAZ segmentation. For RV, we introduce a coarse-to-fine cascaded network composed of a main segmentation model and several small ones for progressive refining. Spatial attention and channel attention modules are utilized for adaptively integrating local features with global dependencies. Through extensive experiments, FARGO is found to yield outstanding segmentation results for both FAZ and RV on the OCTA-500 dataset, performing even better than methods that utilize 3D OCTA volume as an extra input.
L. Peng and L. Lin contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abràmoff, M.D., Garvin, M.K., Sonka, M.: Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 3, 169–208 (2010)
Ang, M., et al.: Optical coherence tomography angiography: a review of current and future clinical applications. Graefes Arch. Clin. Exp. Ophthalmol. 256(2), 237–245 (2018). https://doi.org/10.1007/s00417-017-3896-2
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Cheng, K.K., et al.: Macular vessel density, branching complexity and foveal avascular zone size in normal tension glaucoma. Sci. Rep. 11(1), 1–9 (2021)
Deng, W., Tamplin, M.R., Grumbach, I.M., Kardon, R.H., Garvin, M.K.: Region-based segmentation of capillary density in optical coherence tomography angiography. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds.) OMIA 2019. LNCS, vol. 11855, pp. 18–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32956-3_3
Díaz, M., Novo, J., Cutrín, P., Gómez-Ulla, F., Penedo, M.G., Ortega, M.: Automatic segmentation of the foveal avascular zone in ophthalmological OCT-A images. PLoS ONE 14(2), e0212364 (2019)
Eladawi, N., et al.: Automatic blood vessels segmentation based on different retinal maps from OCTA scans. Comput. Biol. Med. 89, 150–161 (2017)
Fu, H., Xu, Y., Lin, S., Kee Wong, D.W., Liu, J.: DeepVessel: retinal vessel segmentation via deep learning and conditional random field. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 132–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_16
Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)
Klein, R., Myers, C.E., Lee, K.E., Gangnon, R., Klein, B.E.: Changes in retinal vessel diameter and incidence and progression of diabetic retinopathy. Arch. Ophthalmol. 130(6), 749–755 (2012)
Koskosas, A., Muldrew, K., Patton, W., Topouzis, F., Chakravarthy, U.: Foveal avascular zone (FAZ) area in aging and age related macular degeneration (AMD). Investig. Ophthalmol. Vis. Sci. 50(13), 948 (2009)
Li, L., Verma, M., Nakashima, Y., Nagahara, H., Kawasaki, R.: IterNet: retinal image segmentation utilizing structural redundancy in vessel networks. In: The IEEE Winter Conference on Applications of Computer Vision (WACV), March 2020
Li, M., et al.: Image projection network: 3d to 2d image segmentation in OCTA images. IEEE Trans. Med. Imaging 39(11), 3343–3354 (2020)
Li, M., et al.: IPN-V2 and OCTA-500: methodology and dataset for retinal image segmentation. arXiv preprint arXiv:2012.07261 (2020)
Liu, H., Wong, D.W.K., Fu, H., Xu, Y., Liu, J.: DeepAMD: detect early age-related macular degeneration by applying deep learning in a multiple instance learning framework. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11365, pp. 625–640. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20873-8_40
Ma, Y., et al.: ROSE: a retinal OCT-angiography vessel segmentation dataset and new model. IEEE Trans. Med. Imaging 40(3), 928–939 (2020)
Mou, L., et al.: CS-Net: channel and spatial attention network for curvilinear structure segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 721–730. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_80
Mou, L., et al.: CS2-Net: deep learning segmentation of curvilinear structures in medical imaging. Med. Image Anal. 67, 101874 (2021)
Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P., Zheng, Y.: Convolutional neural networks for diabetic retinopathy. Proc. Comput. Sci. 90, 200–205 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Spaide, R.F., Fujimoto, J.G., Waheed, N.K., Sadda, S.R., Staurenghi, G.: Optical coherence tomography angiography. Prog. Retin. Eye Res. 64, 1–55 (2018)
Yip, V.C., et al.: Optical coherence tomography angiography of optic disc and macula vessel density in glaucoma and healthy eyes. J. Glaucoma 28(1), 80–87 (2019)
Zhang, H., et al.: RESNest: split-attention networks. arXiv preprint arXiv:2004.08955 (2020)
Zhang, S., et al.: Attention guided network for retinal image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 797–805. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_88
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)
Zheng, Y., Gandhi, J.S., Stangos, A.N., Campa, C., Broadbent, D.M., Harding, S.P.: Automated segmentation of foveal avascular zone in fundus fluorescein angiography. Invest. Ophthalmol. Vis. Sci. 51(7), 3653–3659 (2010)
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS 2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Peng, L., Lin, L., Cheng, P., Wang, Z., Tang, X. (2021). FARGO: A Joint Framework for FAZ and RV Segmentation from OCTA Images. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2021. Lecture Notes in Computer Science(), vol 12970. Springer, Cham. https://doi.org/10.1007/978-3-030-87000-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-87000-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86999-1
Online ISBN: 978-3-030-87000-3
eBook Packages: Computer ScienceComputer Science (R0)