Skip to main content

Mapping the Diversity of Agricultural Systems in the Cuellaje Sector, Cotacachi, Ecuador Using ATL08 for the ICESat-2 Mission and Machine Learning Techniques

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12957))

Included in the following conference series:

  • 1567 Accesses

Abstract

The mapping of cropland helps to make decisions due to the intensification of its use, where the conditions of the crops change due to climatic variability and other socio-economic factors. In this way, the implementation of modern sustainable agriculture is essential to prevent soil degradation as measures to guarantee food security, propose sustainable rural development and protect the provision of different ecosystem services associated with the soil. NASA’s Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) launched September 15, 2018, offers new possibilities for the mapping of global terrain and vegetation. An additional science objective is to measure vegetation canopy height as a basis for estimating large-scale biomass and biomass change. The Advanced Topographic Laser Altimeter System (ATLAS) instrument on-board ICESat-2 utilizes a photon-counting LIDAR and ancillary systems (GPS and star cameras) to measure the time a photon takes to travel from ATLAS to Earth and back again and to determine the photon’s geodetic latitude and longitude. ICESat-2 ATL08 (Along-Track-Level) data product is developed for vegetation mapping with algorithms for along-track elevation profile of terrain and canopy heights retrieval of the from ATLAS point clouds. Thus, this study presents a brief look at the ATL08 product highlight the broad capability of the satellite for vegetation applications working with data of study area Seis de Julio de Cuellaje (SDJC), province of Imbabura, Ecuador. The study used Normalized Difference Vegetation Index (NDVI) by the year 2020 time-series at 30 m resolution by employing a Machine Learning (ML) approach. The results of this research indicate that the ATL08 data from the ICESat-2 product provide estimates of canopy height, show the potential for crop biomass estimation, and a machine learning land cover classification approach with a precision of 95.57% with Digital Elevation Model (DEM) data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Neuenschwander, A.L., et al.: ATLAS/ICESat-2 L3A Land and Vegetation Height, Version 4. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center (2021). https://doi.org/10.5067/ATLAS/ATL08.004. Accessed Nov 2020

  2. Helber, P., Bischke, A., Dengel1, A., Borth, D.: EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification: German Research Center for Artificial Intelligence (DFKI), Germany (2019). arXiv:1709.00029v2

  3. Bischke, B., Bhardwaj, P., Gautam, A., Helber, P., Borth, D., Dengel, A.: Detection of flooding events in social multimedia and satellite imagery using deep neural networks. In: MediaEval (2017)

    Google Scholar 

  4. Neuenschwander, A.L.: ICESat-2 and ATL08 (Land/Vegetation) Data: University of Texas at Austin. NASA’s Applied Remote Sensing Training Program. 16 March 2021

    Google Scholar 

  5. Ice, Cloud, and Land Elevation Satellite-2, or ICESat-2, to access ICESat-2 data, visit the National Snow & Ice Data Center (NSIDC). https://icesat-2.gsfc.nasa.gov/how-it-works. Accessed 15 Feb 2021

  6. Neuenschwander, A.L., Pitts, K.: The ATL08 land and vegetation product for the ICESat-2 Mission. Appl. Res. Lab. Remote Sens. Environ. 221, 247–259 (2019). University of Texas at Austin, Elsevier. https://doi.org/10.1016/j.rse.2018.11.005

  7. Feng, S., Zhao, J., Liu, T., Zhang, H., Zhang, Z., Guo, X.: Crop type identification and mapping using machine learning algorithms and sentinel-2 time series data. IEEE J. Sel. Top Appl. Earth Observ. Remote Sens. 12(9), 3295–3306 (2019)

    Article  Google Scholar 

  8. Krishna, M., et al.: Crop type identification and spatial mapping using Sentinel-2 satellite data with a focus on field-level information. Geocarto Int. (2020). https://doi.org/10.1080/10106049.2020.1805029

    Article  Google Scholar 

  9. Neuenschwander, A.L., Magruder, L.A.: Canopy and terrain height retrievals with ICESat-2: a first look. Remote Sens. 11, 1721 (2019)

    Article  Google Scholar 

  10. Villacis, E.: Productive and marketing dynamics of: granadilla (passiflora ligularis), naranjilla (solanum quitoense) and tree tomato (solanum betaceum) in the parish of Cuellaje-Cotacachi, July 6, 2013–2017 period. Undergraduate work project to obtain the title of engineer in agribusiness appraisals and surveys, Faculty of Engineering in Agricultural and Environmental Sciences (FICAYA), Technical University of the North, August 2020

    Google Scholar 

  11. Zhua, L., Radeloffa, V., Ives, A.: Improving the mapping of crop types in the Midwestern U.S. by fusing Landsat and MODIS satellite data. Int. J. Appl. Earth Observ. Geoinf. 58, 1–11 (2017). https://doi.org/10.1016/j.jag.2017.01.012

  12. Gobierno Autómomo Descentralizado (GAD) Parroquial de Cuellaje. http://www.cuellaje.gob.ec. Accessed 2 Feb 2021

  13. Castro, W., Herrera, L.: La naranjilla (Solanum quitoense Lam.) en Ecuador. Universidad Central “Marta Abreu” de las Villas, Cuba. Universidad Estatal Amazónica, Ecuador. Editorial Samuel Feijóo (2019). ISBN 978-959-250-337-2

    Google Scholar 

  14. Xing, Y., Huang, J., Gruen, A., Qin, L.: Assessing the Performance of ICESat-2/ATLAS Multi-Channel Photon Data for Estimating Ground Topography in Forested Terrain. Centre for Forest Operations and Environment, Northeast Forestry University, China; Institute of Theoretical Physics, Federal Institute of Technology (ETH), Switzerland. Remote Sensing, June 2020. https://doi.org/10.3390/rs12132084

  15. Wang, Ch., et al.: Ground Elevation Accuracy Verification of ICESat-2 Data: A Case Study in Alaska, USA. Optical Society of America Under the Terms of the OSA Open Access Publishing Agreement, vol. 27, no. 26/23 December 2019/Optics Express 38168

    Google Scholar 

  16. Neuenschwander, A.L., et al.: ATLAS/ICESat-2 L3A Land and Vegetation Height, Version 4 [June to August 2020, 0°15’N, 78°32’W; 0°28’N, 78°21’W]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center (2021). https://doi.org/10.5067/ATLAS/ATL08.004. Accessed 10 Feb 2021

  17. Neuenschwander, A.L., et al.: Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) Algorithm Theoretical Basis Document (ATBD) for Land - Vegetation Along-Track Products (ATL08). Contributions by Land/Vegetation SDT Team Members and ICESat-2 Project Science Office, Winter (2021)

    Google Scholar 

  18. Khalsa, S.J.S., et al.: OpenAltimetry - rapid analysis and visualization of Spaceborne altimeter data. Earth Sci. Inf. (2020). https://doi.org/10.1007/s12145-020-00520-2

    Article  Google Scholar 

  19. Chen, Y., Zhu, Z., Le, Y., Qiu, Z., Chen, G., Wang, L.: Refraction correction and coordinate displacement compensation in nearshore bathymetry using ICESat-2 lidar data and remote-sensing images. Optical Society of America under the terms of the OSA Open Access Publishing Agreement, vol. 29, no. 2/18 January 2021/Optics Express 2411

    Google Scholar 

  20. Luthcke, S., et al.: ICESat-2 pointing calibration and geolocation performance. Earth Space Sci. 8, e2020EA001494 (2021). https://doi.org/10.1029/2020EA001494

  21. Narine, L., Popescu, S., Malambo, L.: Using ICESat-2 to estimate and map forest aboveground biomass: a first example. Remote Sens. 12(11), 1824 (2020). https://doi.org/10.3390/rs12111824

    Article  Google Scholar 

  22. Koehrsen, W.: Random forest in Python. Towards data science. https://towardsdatascience.com/random-forest-in-python-24d0893d51c0

  23. Euro Data Cube. https://eurodatacube.com/dashboard. Accessed 20 May 2021

  24. Google Platform: Google Colab from https://drive.google.com/drive/folders/1kUy5yuWuTSOA70T825NFbeLV6BGTJAto?usp=sharing/ Google Cloud from https://console.cloud.google.com/storage/browser/crop_monitoring/ Google Drive from https://drive.google.com/drive/my-drive/ Google Earth Engine from https://code.earthengine.google.com/. Accessed 5 May 2021

  25. Beyer, R., Alexandrov, O., McMichael, S.: Ames Stereo Pipeline DocumentationRelease 2.7.0. NASA Ames Stereo Pipeline (ASP), July 2020.

    Google Scholar 

  26. PhoREAL v3.24. Geospatial Analysis Toolbox for ICESat 2 Data. User Manual. Applied Research Laboratories, The University of Texas at Austin. https://github.com/icesat-2UT/PhoREAL

  27. Liu, B., Du, S., Zhang, X.: Land cover classification using convolutional neural networkwith remote sensing data and digital surface model (2020). https://doi.org/10.5194/isprs-annals-V-3-2020-39-2020

  28. National Snow and Ice Data Center (NSIDC): Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://nsidc.org/data/ATL08/versions/4. Accessed 10 May 2021

  29. U.S. Geological Survey: Landsat ProductsLandsat Tools and Services EarthNow: Near Real-Time Imagery as Landsat Orbits the Earth (2020). https://earthexplorer.usgs.gov/. Accessed 15 Feb 2021

  30. Scheick, J., et al.: icepyx: Python tools for obtaining and working with ICESat-2 data (2019). https://github.com/icesat2py/icepyx

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrido Fernando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernando, G. (2021). Mapping the Diversity of Agricultural Systems in the Cuellaje Sector, Cotacachi, Ecuador Using ATL08 for the ICESat-2 Mission and Machine Learning Techniques. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12957. Springer, Cham. https://doi.org/10.1007/978-3-030-87013-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87013-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87012-6

  • Online ISBN: 978-3-030-87013-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics