Skip to main content

An Experimental Comparison of Algorithms for Nodes Clustering in a Neural Network of Caenorhabditis Elegans

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Caenorhabditis Elegans (C. Elegans) is a worm, which has had several studies to search its nerve paths. In a neuronal network simulation, it is util to know which is the first weight to assign in each link if it is not presented to determine other characteristics (e.g. distances by weights). Normally, the weight is a heuristic to solve a problem. There is a data set about connections of C. Elegans which is a result of other authors. The weights by the connection are not set in the data set. In this work, we use the data set to determine experimental weights for each connection with four cluster algorithms. The weights are to use in future work. To compare the algorithms, we created several models for each algorithm. We used metrics to evaluate the results for each model. A spectral clustering algorithm was chosen how the better algorithm to generate the weights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.wormatlas.org/.

  2. 2.

    Sklearn Ordinal Encoder.

  3. 3.

    https://scikit-learn.org/.

  4. 4.

    https://www.python.org/.

References

  1. Abbas, O.A.: Comparisons between data clustering algorithms. Int. Arab J. Inf. Technol. (IAJIT) 5(3) (2008)

    Google Scholar 

  2. Bacik, K.A., Schaub, M.T., Beguerisse-Díaz, M., Billeh, Y.N., Barahona, M.: Flow-based network analysis of the Caenorhabditis Elegans connectome. PLoS Comput. Biol. 12(8), e1005055 (2016)

    Article  Google Scholar 

  3. Bargmann, C.I., Horvitz, H.R.: Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in c. elegans. Neuron 7(5), 729–742 (1991)

    Article  Google Scholar 

  4. Chen, L., Vogelstein, J.T., Lyzinski, V., Priebe, C.E.: A joint graph inference case study: the c. elegans chemical and electrical connectomes. In: Worm, p. e1142041. Taylor & Francis (2016)

    Google Scholar 

  5. Du, K.L.: Clustering: a neural network approach. Neural Netw. 23(1), 89–107 (2010)

    Article  Google Scholar 

  6. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, pp. 226–231 (1996)

    Google Scholar 

  7. Florez, H., Cárdenas-Avendaño, A.: A computer-based approach to study the Gaussian moat problem. In: Florez, H., Misra, S. (eds.) ICAI 2020. CCIS, vol. 1277, pp. 481–492. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61702-8_33

    Chapter  Google Scholar 

  8. Golbeck, J.: Analyzing the Social Web. Newnes (2013)

    Google Scholar 

  9. Halkidi, M., Vazirgiannis, M.: A density-based cluster validity approach using multi-representatives. Pattern Recogn. Lett. 29(6), 773–786 (2008)

    Article  Google Scholar 

  10. Hernandez, J., Daza, K., Florez, H.: Alpha-beta vs scout algorithms for the Othello game. In: CEUR Workshops Proceedings, vol. 2846 (2019)

    Google Scholar 

  11. Kim, J., Leahy, W., Shlizerman, E.: Neural interactome: interactive simulation of a neuronal system. Front. Comput. Neurosci. 13, 8 (2019)

    Article  Google Scholar 

  12. Li, S., et al.: A map of the interactome network of the metazoan C. elegans. Science 303(5657), 540–543 (2004)

    Article  Google Scholar 

  13. McGinnis, W.D., Siu, C., Andre, S., Huang, H.: Category encoders: a Scikit-learn-contrib package of transformers for encoding categorical data. J. Open Sour. Softw. 3(21), 501 (2018)

    Article  Google Scholar 

  14. Morales, A., Froese, T.: Unsupervised learning facilitates neural coordination across the functional clusters of the C. elegans connectome. Front. Robot. AI 7, 40 (2020)

    Article  Google Scholar 

  15. Sanchez, D., Florez, H.: Improving game modeling for the Quoridor game state using graph databases. In: Rocha, Á., Guarda, T. (eds.) ICITS 2018. AISC, vol. 721, pp. 333–342. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73450-7_32

    Chapter  Google Scholar 

  16. Towlson, E.K.: Caenorhabditis elegans and the network control framework–FAQs. Philos. Trans. R. Soc. B: Biol. Sci. 373(1758), 20170372 (2018)

    Article  Google Scholar 

  17. Varshney, L.R., Chen, B.L., Paniagua, E., Hall, D.H., Chklovskii, D.B.: Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 7(2), e1001066 (2011)

    Article  Google Scholar 

  18. Velosa, F., Florez, H.: Edge solution with machine learning and open data to interpret signs for people with visual disability. In: CEUR Workshop Proceedings, vol. 2714, pp. 15–26 (2020)

    Google Scholar 

  19. White, J.G., Southgate, E., Thomson, J.N., Brenner, S.: The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314(1165), 1–340 (1986)

    Article  Google Scholar 

  20. White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: Proceedings of the 2005 SIAM International Conference on Data Mining, pp. 274–285. SIAM (2005)

    Google Scholar 

  21. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. ACM SIGMOD Rec. 25(2), 103–114 (1996)

    Article  Google Scholar 

  22. Zhuzhunashvili, D., Knyazev, A.: Preconditioned spectral clustering for stochastic block partition streaming graph challenge (preliminary version at arxiv.). In: 2017 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6. IEEE (2017)

    Google Scholar 

  23. Zuluaga, J.Y., Yepes-Calderon, F.: Tensor domain averaging in diffusion imaging of small animals to generate reliable tractography. ParadigmPlus 2(1), 1–19 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Florez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hernandez, J., Florez, H. (2021). An Experimental Comparison of Algorithms for Nodes Clustering in a Neural Network of Caenorhabditis Elegans. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12957. Springer, Cham. https://doi.org/10.1007/978-3-030-87013-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87013-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87012-6

  • Online ISBN: 978-3-030-87013-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics