Abstract
Research on Real-Time Location Systems (RTLS) for indoor environments establishes Bluetooth Low Energy as a promising technological low-cost solution for various environments. However, in indoor environments, there are numerous obstacles such as furniture, walls, partitions, etc. that will cause obstructions to Bluetooth signals. This research established the effect of Perspex on Bluetooth transmission in an indoor environment. This research extends on our previous research which evaluated RTLS technologies, RTLS constraints, and an energy efficient design model for sensor detection in indoor environments. Perspex was chosen for this research as it is used as a common shield used to minimize COVID transmission in an office environment. In general, the 3 mm and 5 mm Perspex did not have a significant impact on Bluetooth transmission.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, Y., Ye, Q., Cheng, J., Wang, L.: RSSI-based bluetooth indoor localization. In: 11th International Conference on Mobile Ad-hoc and Sensor Networks (MSN), pp. 165–171. IEEE (2015)
Thaljaoui, A., Val, T., Nasri, N., Brulin, D.: BLE localization using RSSI measurements and iRingLA. In: 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 2178–2183. IEEE (2015)
Pancham, J., Millham, R., Fong, S.J.: Assessment of feasible methods used by the health care industry for real time location. In: Federated Conference on Computer Science and Information Systems (2017)
Pancham, J., Millham, R., Fong, S.J.: Evaluation of real time location system technologies in the health care sector. In: 17th International Conference on Computational Science and its Applications (ICCSA), pp. 1–7. IEEE (2017)
Liang, Q., Lin, J., Liu, M.: Towards robust visible light positioning under LED shortage by visual-inertial fusion. In: 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8. IEEE (2019)
Schroeer, G.: A real-time UWB multi-channel indoor positioning system for industrial scenarios. In: 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–5. IEEE (2018)
Risset, T., Goursaud, C., Brun, X., Marquet, K., Meyer, F.: UWB ranging for rapid movements. In: 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8. IEEE (2018)
Martinelli, A., Jayousi, S., Caputo, S., Mucchi, L.: UWB positioning for industrial applications: the galvanic plating case study. In: 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–7. IEEE (2019)
Naghdi, S., O’Keefe, K.: Trilateration with BLE RSSI accounting for pathloss due to human obstacles. In: International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8. IEEE (2019)
Moreira, A., Silva, I., Meneses, F., Nicolau, M.J., Pendao, C., Torres-Sospedra, J.: Multiple simultaneous Wi-Fi measurements in fingerprinting indoor positioning. In: 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8. IEEE (2017)
Kim, C., Bhatt, C., Patel, M., Kimber, D., Tjahjadi, Y.: InFo: indoor localization using fusion of visual information from static and dynamic cameras. In: 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8. IEEE (2019)
Kim, S., Ha, S., Saad, A., Kim, J.: Indoor positioning system techniques and security. In: Fourth International Conference on e-Technologies and Networks for Development (ICeND), pp. 1–4. IEEE (2015)
Sato, A., Nakajima, M., Kohtake, N.: Rapid BLE beacon localization with range-only EKF-SLAM using beacon interval constraint. In: 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8. IEEE (2019)
International Standards Organization (ISO): Information Technology - Automatic Identification and Data Capture (AIDC) Techniques - Harmonized Vocabulary - Part 5: Locating Systems, vol. ISO/IEC 19762-5. ISO, Geneva (2007)
Fisher, J.A., Monahan, T.: Evaluation of real-time location systems in their hospital contexts. Int. J. Med. Inform. 81, 705–712 (2012)
Tsang, P., Wu, C., Ip, W., Ho, G., Tse, Y.: A bluetooth-based indoor positioning system: a simple and rapid approach. Annu. J. IIE (HK) 35, 11–26 (2015)
Yu, B., Xu, L., Li, Y.: Bluetooth low energy (BLE) based mobile electrocardiogram monitoring system. In: International Conference on Information and Automation (ICIA), pp. 763–767. IEEE (2012)
Deng, Z.Y., Yu, Y., Yuan, X., Wan, N., Yang, L.: Situation and development tendency of indoor positioning. China Commun. 10, 42–55 (2013)
Lee, J.-S., Dong, M.-F., Sun, Y.-H.: A preliminary study of low power wireless technologies: ZigBee and bluetooth low energy. In: 10th Conference on Industrial Electronics and Applications (ICIEA), pp. 135–139. IEEE (2015)
Kolodziej, K.W., Hjelm, J.: Local Positioning Systems: LBS Applications and Services. CRC Press, Boca Raton (2017)
Deak, G., Curran, K., Condell, J.: A survey of active and passive indoor localisation systems. Comput. Commun. 35, 1939–1954 (2012)
Zaim, D., Bellafkih, M.: Bluetooth low energy (BLE) based geomarketing system. In: 11th International Conference on Intelligent Systems: Theories and Applications (SITA), pp. 1–6. IEEE (2016)
https://www.bluetooth.com/what-is-bluetooth-technology/how-it-works/low-energy
Han, G.K., Gudrun, J., Ostler, D., Schneider, A.: Testing a proximity-based location tracking system with bluetooth low energy tags for future use in the OR. In: 2015 17th International Conference on E-Health Networking, Application & Services (HealthCom), pp. 17–21. IEEE (2015)
Raza, S., Misra, P., He, Z., Voigt, T.: Building the internet of things with bluetooth smart. Ad Hoc Netw. 57, 19–31 (2016)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Pancham, J., Millham, R.C., Fong, S.J. (2021). Determining the Impact of Perspex Obstacles on Bluetooth Transmission Paths Within a Simulated Office Environment for More Accurate Location Determination. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12957. Springer, Cham. https://doi.org/10.1007/978-3-030-87013-3_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-87013-3_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87012-6
Online ISBN: 978-3-030-87013-3
eBook Packages: Computer ScienceComputer Science (R0)