Skip to main content

Conceptual Modeling Interacts with Machine Learning – A Systematic Literature Review

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12957))

Included in the following conference series:

  • 1642 Accesses

Abstract

Due to the advancement in the digital world, society’s expectation towards Machine Learning is very high, especially in Conceptual Modeling. However, the relationship between Machine Learning and Conceptual models are very interesting. Literature in this field has identified the relationship and interaction between Machine Learning and Conceptual Models. However, to the best of our knowledge, there is not a Systematic Literature Review devoted to studying in deep the interaction of these two fields. In this paper, the authors conduct a Systematic Literature Review to get to know how Machine Learning is used in Conceptual Modeling. Results show the deep connection of Machine Learning with Conceptual Models in a solid way, as well as providing challenges and opportunities for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liew, C.F., DeLatte, D., Takeishi, N., Yairi, T.: Recent developments in aerial robotics: a survey and prototypes overview. arXiv:1711.10085 cs, November 2017

  2. Castellanos, A., Tremblay, M.C., Lukyanenko, R., Samuel, B.: Basic classes in conceptual modeling: theory and practical guidelines. J. Assoc. Inf. Syst. 21, 44 (2020)

    Google Scholar 

  3. Eckerson, W.W.: Data warehousing special report: data quality and the bottom line. Appl. Dev. Trends 1, 1–9 (2002)

    Google Scholar 

  4. Sabegh, M.A.J., Lukyanenko, R., Recker, J., Samuel, B., Castellanos, A.: Conceptual modeling research in information systems: what we now know and what we still do not know, p. 11 (2017)

    Google Scholar 

  5. Khatri, V., Samuel, B.M.: Analytics for managerial work. Commun. ACM 62(4), 100 (2019). https://doi.org/10.1145/3274277

    Article  Google Scholar 

  6. Jones, N.: Using massive amounts of data to recognize photos and speech, deep-learning computers are taking a big step towards true artificial intelligence. Nature 505, 1–3 (2014)

    Google Scholar 

  7. Lukyanenko, R., Parsons, J., Storey, V.C.: Modeling matters: can conceptual modeling support machine learning?, p. 11 (2018)

    Google Scholar 

  8. Tsymbal, A., Zillner, S., Huber, M.: Ontology – supported machine learning and decision support in biomedicine. In: Cohen-Boulakia, S., Tannen, V. (eds.) DILS 2007. LNCS, vol. 4544, pp. 156–171. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73255-6_14

    Chapter  Google Scholar 

  9. Alonso, O.: Challenges with label quality for supervised learning. J. Data Inf. Qual. 6(1), 1–3 (2015). https://doi.org/10.1145/2724721

    Article  MathSciNet  Google Scholar 

  10. Castelvecchi, D.: Machine learning is becoming ubiquitous in basic research as well as in industry. But for scientists to trust it, they first need to understand what the machines are doing, p. 4

    Google Scholar 

  11. Crevier, D.: AI: The Tumultuous History of the Search for Artificial Intelligence. Basic Books, New York (1993)

    Google Scholar 

  12. Cerf, V.G.: AI is not an excuse! Commun. ACM 62(10), 7 (2019). https://doi.org/10.1145/3359332

    Article  Google Scholar 

  13. Ribeiro, M.T., Singh, S., Guestrin, C.: ‘Why should i trust you?’: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, pp. 1135–1144, August 2016. https://doi.org/10.1145/2939672.2939778

  14. Lukyanenko, R., Castellanos, A., Storey, V.C., Castillo, A., Tremblay, M.C., Parsons, J.: Superimposition: augmenting machine learning outputs with conceptual models for explainable AI. In: Grossmann, G., Ram, S. (eds.) ER 2020. LNCS, vol. 12584, pp. 26–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65847-2_3

    Chapter  Google Scholar 

  15. Henelius, A., Puolamäki, K., Boström, H., Asker, L., Papapetrou, P.: A peek into the black box: exploring classifiers by randomization. Data Min. Knowl. Discov. 28, 1503–1529 (2014). https://doi.org/10.1007/s10618-014-0368-8

    Article  MathSciNet  Google Scholar 

  16. Azevedo, C.L.B., Iacob, M.-E., Almeida, J.P.A., van Sinderen, M., Pires, L.F., Guizzardi, G.: Modeling resources and capabilities in enterprise architecture: a well-founded ontology-based proposal for ArchiMate. Inf. Syst. 54, 235–262 (2015). https://doi.org/10.1016/j.is.2015.04.008

    Article  Google Scholar 

  17. Aguirre-Urreta, M.I., Marakas, G.M.: Comparing conceptual modeling techniques: a critical review of the EER vs. OO empirical literature. SIGMIS Database 39(2), 9–32 (2008). https://doi.org/10.1145/1364636.1364640

    Article  Google Scholar 

  18. Lukyanenko, R.: Rethinking the role of conceptual modeling in the introductory IS curriculum, p. 10 (2019)

    Google Scholar 

  19. Mark, G., Lyytinen, K., Bergman, M.: Boundary objects in design: an ecological view of design artifacts. J. Assoc. Inf. Syst. 8(11), 34 (2007). https://doi.org/10.17705/1jais.00144

    Article  Google Scholar 

  20. Jackson, J.: Data mining; a conceptual overview. CAIS 8, 19 (2002). https://doi.org/10.17705/1CAIS.00819

    Article  Google Scholar 

  21. Lukyanenko, R., Castellanos, A., Parsons, J., Chiarini, T.M., Storey, V.C.: Using conceptual modeling to support machine learning. In: Cappiello, C., Ruiz, M. (eds.) CAiSE 2019. LNBIP, vol. 350, pp. 170–181. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21297-1_15

    Chapter  Google Scholar 

  22. Fettke, P.: Conceptual modelling and artificial intelligence (2020)

    Google Scholar 

  23. Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.): ER 2003. LNCS, vol. 2813. Springer, Heidelberg (2003). https://doi.org/10.1007/b13244

    Book  MATH  Google Scholar 

  24. Hall, P., Gill, N.: An Introduction to Machine Learning Interpretability, 2nd edn., p. 62. O’Reilly, Boston (2019)

    Google Scholar 

  25. Damiani, E., Frati, F.: Towards conceptual models for machine learning computations. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 3–9. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_1

    Chapter  Google Scholar 

  26. Hossain, B.A., Schwitter, R.: Specifying conceptual models using restricted natural language (2018)

    Google Scholar 

  27. Wang, J.: Research on spatial conceptual modeling of natural language processing based on deep learning algorithms. J. Phys. Conf. Ser. 1345, 042090 (2019). https://doi.org/10.1088/1742-6596/1345/4/042090

    Article  Google Scholar 

  28. Storey, V.C., Song, I.-Y.: Big data technologies and management: what conceptual modeling can do. Data Knowl. Eng. 108, 50–67 (2017). https://doi.org/10.1016/j.datak.2017.01.001

    Article  Google Scholar 

  29. Lukyanenko, R., Parsons, J., Wiersma, Y., Wachinger, G., Huber, B., Meldt, R.: Representing crowd knowledge: guidelines for conceptual modeling of user-generated content. JAIS 18(4), 297–339 (2017). https://doi.org/10.17705/1jais.00456

    Article  Google Scholar 

  30. Sothilingam, R., Yu, E., Senderovich, A.: Towards higher maturity for machine learning: a conceptual modelling approach. iJournal Grad. Stud. J. Faculty Inf. 5(1), Art. no. 1 (2019). https://doi.org/10.33137/ijournal.v5i1.33476

  31. Elbattah, M.: How can machine learning support the practice of modeling and simulation? – a review and directions for future research. In: 2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT), Cosenza, Italy, October 2019, pp. 1–7. https://doi.org/10.1109/DS-RT47707.2019.8958703

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zaidi, M.A. (2021). Conceptual Modeling Interacts with Machine Learning – A Systematic Literature Review. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12957. Springer, Cham. https://doi.org/10.1007/978-3-030-87013-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87013-3_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87012-6

  • Online ISBN: 978-3-030-87013-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics