Skip to main content

A Computational Analysis of the Reaction of Atomic Oxygen O(\(^3\)P) with Acrylonitrile

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

The work is focused on the characterization of a long-range interacting complex in the reaction between atomic oxygen, in its ground state O(\(^{3}\)P) and acrylonitrile CH\(_{2}\)CHCN, also known as vinyl cyanide or cyano ethylene, through electronic structure calculations. Different ab initio methods have been used in order to understand which functional provides a better description of the long-range interaction. The results of the work suggest that B2PLYPD3 gives the best description of the long-range interaction, while CAM-B3LYP represents the best compromise between chemical accuracy and computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vuitton, V., Yelle, R., McEwan, M.: Ion chemistry and n-containing molecules in Titan’s upper atmosphere. Icarus 191(2), 722–742 (2007)

    Article  Google Scholar 

  2. Cui, J., et al.: Analysis of Titan’s neutral upper atmosphere from Cassini ion neutral mass spectrometer measurements. Icarus 200(2), 581–615 (2009)

    Article  Google Scholar 

  3. Palmer, M.Y., et al.: Alma detection and astrobiological potential of vinyl cyanide on Titan. Sci. Adv. 3(7), e1700022 (2017)

    Article  Google Scholar 

  4. Feuchtgruber, H., et al.: Oxygen in the stratospheres of the giant planets and Titan. In: The Universe as Seen by ISO, vol. 427, p. 133 (1999)

    Google Scholar 

  5. Teanby, N., et al.: The origin of Titan’s external oxygen: further constraints from ALMA upper limits on CS and CH2NH. Astron. J. 155(6), 251 (2018)

    Article  Google Scholar 

  6. Hörst, S.M., Vuitton, V., Yelle, R.V.: Origin of oxygen species in Titan’s atmosphere. J. Geophys. Res. Planets 113(E10), 1–14 (2008)

    Article  Google Scholar 

  7. Gardner, F., Winnewisser, G.: The detection of interstellar vinyl cyanide/acrylonitrile. Astrophys. J. 195, L127–L130 (1975)

    Article  Google Scholar 

  8. Matthews, H.E., Sears, T.J.: The detection of vinyl cyanide in TMC-1. Astrophys. J. 272, 149–153 (1983)

    Article  Google Scholar 

  9. Nummelin, A., Bergman, P.: Vibrationally excited vinyl cyanide in SGR B2(N). Astron. Astrophys. 341, L59–L62 (1999)

    Google Scholar 

  10. Agúndez, M., Fonfría, J.P., Cernicharo, J., Pardo, J., Guélin, M.: Detection of circumstellar CH2CHCN, CH2CN, CH3CCH, and H2CS. Astron. Astrophys. 479(2), 493–501 (2008)

    Article  Google Scholar 

  11. López, A., et al.: Laboratory characterization and astrophysical detection of vibrationally excited states of vinyl cyanide in Orion-KL. Astron. Astrophys. 572, A44 (2014)

    Article  Google Scholar 

  12. Vastel, C., Loison, J.C., Wakelam, V., Lefloch, B.: Isocyanogen formation in the cold interstellar medium. Astron. Astrophys. 625, A91 (2019)

    Article  Google Scholar 

  13. Cavallotti, C., et al.: Relevance of the channel leading to formaldehyde + triplet ethylidene in the O(\(^3\)P)+ propene reaction under combustion conditions. J. Phys. Chem. Lett. 5(23), 4213–4218 (2014)

    Article  Google Scholar 

  14. Balucani, N., Leonori, F., Casavecchia, P.: Crossed molecular beam studies of bimolecular reactions of relevance in combustion. Energy 43(1), 47–54 (2012)

    Article  Google Scholar 

  15. Cavallotti, C., et al.: Theoretical study of the extent of intersystem crossing in the O(\(^3\)P) + C6H6 reaction with experimental validation. J. Phys. Chem. Lett. 11(22), 9621–9628 (2020)

    Article  Google Scholar 

  16. Leonori, F., Occhiogrosso, A., Balucani, N., Bucci, A., Petrucci, R., Casavecchia, P.: Crossed molecular beam dynamics studies of the O(\(^3\)P) + allene reaction: primary products, branching ratios, and dominant role of intersystem crossing. J. Phys. Chem. Lett. 3(1), 75–80 (2012)

    Article  Google Scholar 

  17. Balucani, N., Leonori, F., Casavecchia, P., Fu, B., Bowman, J.M.: Crossed molecular beams and quasiclassical trajectory surface hopping studies of the multichannel nonadiabatic O(\(^3\)P) + ethylene reaction at high collision energy. J. Phys. Chem. A 119(50), 12498–12511 (2015)

    Article  Google Scholar 

  18. Fu, B., et al.: Experimental and theoretical studies of the O(\(^3\)P) + C2H4 reaction dynamics: collision energy dependence of branching ratios and extent of intersystem crossing. J. Chem. Phys. 137(22), 22A532 (2012)

    Article  Google Scholar 

  19. Simoneit, B.R., Rushdi, A., Bin Abas, M., Didyk, B.: Alkyl amides and nitriles as novel tracers for biomass burning. Environ. Sci. Technol. 37(1), 16–21 (2003)

    Article  Google Scholar 

  20. Skouteris, D., Manolopoulos, D.E., Bian, W., Werner, H.J., Lai, L.H., Liu, K.: van der Waals interactions in the CL + HD reaction. Science 286(5445), 1713–1716 (1999)

    Article  Google Scholar 

  21. Balucani, N., et al.: The dynamics of the prototype abstraction reaction Cl(\(^2\)P3/2,1/2) + H2: a comparison of crossed molecular beam experiments with exact quantum scattering calculations on coupled ab initio potential energy surfaces. Phys. Chem. Chem. Phys. 6(21), 5007–5017 (2004)

    Article  Google Scholar 

  22. Skouteris, D., et al.: Experimental and theoretical differential cross sections for the reactions Cl+H2/D2. J. Chem. Phys. 114(24), 10662–10672 (2001)

    Article  Google Scholar 

  23. Heard, D.E.: Rapid acceleration of hydrogen atom abstraction reactions of OH at very low temperatures through weakly bound complexes and tunneling. Acc. Chem. Res. 51(11), 2620–2627 (2018)

    Article  Google Scholar 

  24. Recio, P., et al.: Efficient intersystem crossing from weakly bound pre-reactive complex avoids the entrance barrier of bimolecular reactions. Nat. Chem. (submitted)

    Google Scholar 

  25. Sun, J., et al.: Theoretical investigation on atmospheric reaction of atomic O(\(^3\)P) with acrylonitrile. Comput. Theor. Chem. 1052, 17–25 (2015)

    Article  Google Scholar 

  26. Upadhyaya, H.P., et al.: Reaction kinetics of O(\(^3\)P) with acrylonitrile and crotononitrile. Chem. Phys. Lett. 274(4), 383–389 (1997)

    Article  Google Scholar 

  27. Falcinelli, S., Rosi, M., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Stereoselectivity in autoionization reactions of hydrogenated molecules by metastable noble gas atoms: the role of electronic couplings. Chem. Eur. J. 22(35), 12518–12526 (2016)

    Article  Google Scholar 

  28. Leonori, F., et al.: Crossed-beam and theoretical studies of the S(\(^{1}\)D) + C\(_{2}\)H\(_{2}\) reaction. J. Phys. Chem. A 113(16), 4330–4339 (2009)

    Article  Google Scholar 

  29. Bartolomei, M., et al.: The intermolecular potential in NO-N\(_{2}\) and (NO-N\(_{2}\))\(^{+}\) systems: implications for the neutralization of ionic molecular aggregates. Phys. Chem. Chem. Phys. 10(39), 5993–6001 (2008)

    Article  Google Scholar 

  30. de Petris, G., Cartoni, A., Rosi, M., Barone, V., Puzzarini, C., Troiani, A.: The proton affinity and gas-phase basicity of sulfur dioxide. ChemPhysChem 12(1), 112–115 (2011)

    Article  Google Scholar 

  31. Leonori, F., et al.: Observation of organosulfur products (thiovinoxy, thioketene and thioformyl) in crossed-beam experiments and low temperature rate coefficients for the reaction S(\(^{1}\)D) + C\(_{2}\)H\(_{4}\). Phys. Chem. Chem. Phys. 11(23), 4701–4706 (2009)

    Article  Google Scholar 

  32. de Petris, G., Rosi, M., Troiani, A.: SSOH and HSSO radicals: an experimental and theoretical study of [S\(_{2}\)OH]\(^{0/+/-}\) species. J. Phys. Chem. A 111(28), 6526–6533 (2007)

    Article  Google Scholar 

  33. Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Leonori, F., Skouteris, D.: Theoretical study of reactions relevant for atmospheric models of Titan: interaction of excited nitrogen atoms with small hydrocarbons. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 331–344. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_26

    Chapter  Google Scholar 

  34. Berteloite, C., et al.: Low temperature kinetics, crossed beam dynamics and theoretical studies of the reaction S(\(^1\)D) + CH\(_{4}\) and low temperature kinetics of S(\(^1\)D) + C\(_{2}\)H\(_{2}\). Phys. Chem. Chem. Phys. 13(18), 8485–8501 (2011)

    Article  Google Scholar 

  35. Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Skouteris, D.: A theoretical study of formation routes and dimerization of methanimine and implications for the aerosols formation in the upper atmosphere of Titan. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 47–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_4

    Chapter  Google Scholar 

  36. Sleiman, C., El Dib, G., Rosi, M., Skouteris, D., Balucani, N., Canosa, A.: Low temperature kinetics and theoretical studies of the reaction CN + CH\(_{3}\)NH\(_{2}\): a potential source of cyanamide and methyl cyanamide in the interstellar medium. Phys. Chem. Chem. Phys. 20(8), 5478–5489 (2018)

    Article  Google Scholar 

  37. Becke, A.D.: A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98(2), 1372–1377 (1993)

    Article  Google Scholar 

  38. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785 (1988)

    Article  Google Scholar 

  39. Becke, A.D.: Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5652 (1993). https://doi.org/10.1063/1.464913

    Article  Google Scholar 

  40. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)

    Article  Google Scholar 

  41. Grimme, S., Ehrlich, S., Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011)

    Article  Google Scholar 

  42. Goerigk, L., Grimme, S.: Efficient and accurate double-hybrid-meta-GGA density functionals-evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 7(2), 291–309 (2011)

    Article  Google Scholar 

  43. Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393(1–3), 51–57 (2004)

    Article  Google Scholar 

  44. Grimme, S.: Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124(3), 034108 (2006)

    Article  Google Scholar 

  45. Chai, J.D., Head-Gordon, M.: Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 128(8), 084106 (2008)

    Article  Google Scholar 

  46. Chai, J.D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10(44), 6615–6620 (2008)

    Article  Google Scholar 

  47. Lin, Y.S., Li, G.D., Mao, S.P., Chai, J.D.: Long-range corrected hybrid density functionals with improved dispersion corrections. J. Chem. Theory Comput. 9(1), 263–272 (2013)

    Article  Google Scholar 

  48. Goerigk, L., Hansen, A., Bauer, C., Ehrlich, S., Najibi, A., Grimme, S.: A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 19(48), 32184–32215 (2017)

    Article  Google Scholar 

  49. Tawada, Y., Tsuneda, T., Yanagisawa, S., Yanai, T., Hirao, K.: A long-range-corrected time-dependent density functional theory. J. Chem. Phys. 120(18), 8425–8433 (2004)

    Article  Google Scholar 

  50. Dunning, T.H., Jr.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007–1023 (1989)

    Article  Google Scholar 

  51. Bartlett, R.J.: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu. Rev. Phys. Chem. 32(1), 359–401 (1981)

    Article  Google Scholar 

  52. Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157(6), 479–483 (1989)

    Article  Google Scholar 

  53. Olsen, J., Jørgensen, P., Koch, H., Balkova, A., Bartlett, R.J.: Full configuration-interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 104(20), 8007–8015 (1996)

    Article  Google Scholar 

  54. Frisch, M., et al.: Gaussian 09, Revision A. 02, 2009, Gaussian. Inc., Wallingford CT (2009)

    Google Scholar 

  55. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4(1), 1–17 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 811312 for the project “Astro-Chemical Origins” (ACO). This work was supported by the Italian Space Agency (ASI) BANDO ASI DC-VUM-2017-034 CONTRATTO DI FINANZIAMENTO ASI N. 2019-3 U.O, “Vita nello spazio - Origine, presenza, persistenza della vita nello spazio, dalle molecole agli estremofili”. The authors acknowledge the Dipartimento di Ingegneria Civile e Ambientale of the University of Perugia for allocated computing time within the project “Dipartimenti di Eccellenza 2018–2022”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Mancini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mancini, L., de Aragão, E.V.F. (2021). A Computational Analysis of the Reaction of Atomic Oxygen O(\(^3\)P) with Acrylonitrile. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12958. Springer, Cham. https://doi.org/10.1007/978-3-030-87016-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87016-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87015-7

  • Online ISBN: 978-3-030-87016-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics