Skip to main content

Classification of Biomolecules by Invariant Shape Coordinates and Deformation Indexes

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12958))

Included in the following conference series:

  • 1574 Accesses

Abstract

In this paper we consider to approach the issue of the classification of protein structures by assigning them, in a unique way, sets of invariant parameters. To such purpose we suggest the use of shape parameters and deformation indexes derived from “symmetric” hyperspherical coordinates, as introduced by us in previous works. We give a resume of the theoretical background of coordinate and parameter derivation, followed by an application of the method to some representative protein structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perri, D., Simonetti, M., Lombardi, A., Faginas-Lago, N., Gervasi, O.: Binary classification of proteins by a machine learning approach. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12255, pp. 549–558. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_41

    Chapter  Google Scholar 

  2. Zhao, B., Guo, H.: State-to-state quantum reactive scattering in four-atom systems. WIREs Comput. Mol. Sci. 7, e1301 (2017)

    Article  Google Scholar 

  3. Skouteris, D., Castillo, J., Manolopoulos, D.E.: ABC: a quantum reactive scattering program. Comput. Phys. Commun. 133, 128–135 (2000)

    Article  MATH  Google Scholar 

  4. Lepetit, B., Launay, J.M.: Quantum-mechanical study of the reaction He+H\(_{2}^+ \rightarrow \) HeH\(^+\) + H with hyperspherical coordinates. J. Chem. Phys. 95, 5159–5168 (1991)

    Article  Google Scholar 

  5. Aquilanti, V., Beddoni, A., Cavalli, S., Lombardi, A., Littlejohn, R.: Collective hyperspherical coordinates for polyatomic molecules and clusters. Mol. Phys. 98(21), 1763–1770 (2000)

    Article  Google Scholar 

  6. Aquilanti, V., Beddoni, A., Lombardi, A., Littlejohn, R.: Hyperspherical harmonics for polyatomic systems: basis set for kinematic rotations. Int. J. Quantum Chem. 89(4), 277–291 (2002)

    Article  Google Scholar 

  7. Aquilanti, V., Lombardi, A., Littlejohn, R.: Hyperspherical harmonics for polyatomic systems: basis set for collective motions. Theoret. Chem. Acc. 111(2–6), 400–406 (2004)

    Article  Google Scholar 

  8. Kuppermann, A.: Quantum reaction dynamics and hyperspherical harmonics. Isr. J. Chem. 43, 229 (2003)

    Article  Google Scholar 

  9. De Fazio, D., Cavalli, S., Aquilanti, V.: Benchmark quantum mechanical calculations of vibrationally resolved cross sections and rate constants on ab initio potential energy surfaces for the F + HD reaction: comparisons with experiments. J. Phys. Chem. A 120, 5288–5299 (2016)

    Article  Google Scholar 

  10. Aquilanti, V., Cavalli, S.: The quantum-mechanical Hamiltonian for tetraatomic systems insymmetric hyperspherical coordinates. J. Chem. Soc. Faraday Trans. 93, 801–809 (1997)

    Article  Google Scholar 

  11. Barreto, P.R.P., Vilela, A.F.A., Lombardi, A., Maciel, G.S., Palazzetti, F., Aquilanti, V.: The hydrogen peroxide-rare gas systems: quantum chemical calculations and hyperspherical harmonic representation of the potential energy surface for atom–floppy molecule interactions. J. Phys. Chem. A 111(49), 12754–12762 (2007)

    Article  Google Scholar 

  12. Lombardi, A., Laganà, A., Pirani, F., Palazzetti, F., Lago, N.F.: Carbon oxides in gas flows and earth and planetary atmospheres: state-to-state simulations of energy transfer and dissociation reactions. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 17–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39643-4_2

    Chapter  Google Scholar 

  13. Lago, N.F., Albertí, M., Laganà, A., Lombardi, A.: Water (H\(_2\)O)\(_\mathit{m}\) or benzene (C\(_6\)H\(_6\))\(_\mathit{n}\) aggregates to solvate the K\(^{+}\)? In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 1–15. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_1

    Chapter  Google Scholar 

  14. Faginas-Lago, N., Albertí, M., Costantini, A., Laganá, A., Lombardi, A., Pacifici, L.: An innovative synergistic grid approach to the computational study of protein aggregation mechanisms. J. Mol. Model. 20(7), 2226 (2014)

    Article  Google Scholar 

  15. Faginas-Lago, N., Yeni, D., Huarte, F., Alcamì, M., Martin, F.: Adsorption of hydrogen molecules on carbon nanotubes using quantum chemistry and molecular dynamics. J. Phys. Chem. A 120, 6451–6458 (2016)

    Article  Google Scholar 

  16. Faginas-Lago, N., Lombardi, A., Albertí, M., Grossi, G.: Accurate analytic intermolecular potential for the simulation of Na\(^+\) and K\(^+\) ion hydration in liquid water. J. Mol. Liq. 204, 192–197 (2015)

    Article  Google Scholar 

  17. Albertí, M., Faginas Lago, N.: Competitive solvation of K\(^{+}\) by C\(_6\)H\(_6\) and H\(_2\)O in the K\(^{+}\)-(C\(_6\)h\(_6\))\(_n\)-(H\(_2\)O)\(_m\) (n = 1–4; m = 1–6) aggregates. Eur. Phys. J. D 67, 73 (2013)

    Article  Google Scholar 

  18. Albertí, M., Faginas Lago, N.: Ion size influence on the Ar solvation shells of M\(^+\)-C\(_6\)F\(_6\) clusters (m = na, k, rb, cs). J. Phys. Chem. A 116, 3094–3102 (2012)

    Article  Google Scholar 

  19. Albertí, M., Faginas Lago, N., Pirani, F.: Ar solvation shells in K\(^+\)-HFBz: from cluster rearrangement to solvation dynamics. J. Phys. Chem. A 115, 10871–10879 (2011)

    Article  Google Scholar 

  20. Lago, N.F., Albertí, M., Laganà, A., Lombardi, A., Pacifici, L., Costantini, A.: The molecular stirrer catalytic effect in methane ice formation. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 585–600. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_40

    Chapter  Google Scholar 

  21. Faginas-Lago, N., Huarte Larrañaga, F., Albertí, M.: On the suitability of the ILJ function to match different formulations of the electrostatic potential for water-water interactions. Eur. Phys. J. D 55(1), 75 (2009)

    Article  Google Scholar 

  22. Bartolomei, M., Pirani, F., Laganà, A., Lombardi, A.: A full dimensional grid empowered simulation of the CO\(_2\)+ CO\(_2\) processes. J. Comput. Chem. 33, 1806 (2012)

    Article  Google Scholar 

  23. Lombardi, A., Lago, N.F., Laganà, A., Pirani, F., Falcinelli, S.: A bond-bond portable approach to intermolecular interactions: simulations for N-methylacetamide and carbon dioxide dimers. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 387–400. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_30

    Chapter  Google Scholar 

  24. Albertí, M., Faginas-Lago, N., Laganà, A., Pirani, F.: A portable intermolecular potential for molecular dynamics studies of NMA-NMA and NMA-H\(_2\)O aggregates. Phys. Chem. Chem. Phys. 13(18), 8422–8432 (2011)

    Article  Google Scholar 

  25. Albertí, M., Faginas-Lago, N., Pirani, F.: Benzene water interaction: from gaseous dimers to solvated aggregates. Chem. Phys. 399, 232 (2012)

    Article  Google Scholar 

  26. Falcinelli, S., et al.: Modeling the intermolecular interactions and characterization of the dynamics of collisional autoionization processes. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 69–83. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_6

    Chapter  Google Scholar 

  27. Lombardi, A., Faginas-Lago, N., Pacifici, L., Costantini, A.: Modeling of energy transfer from vibrationally excited CO\(_2\) molecules: cross sections and probabilities for kinetic modeling of atmospheres, flows, and plasmas. J. Phys. Chem. A 117(45), 11430–11440 (2013)

    Article  Google Scholar 

  28. Lombardi, A., Pirani, F., Laganà, A., Bartolomei, M.: Energy transfer dynamics and kinetics of elementary processes (promoted) by gas-phase CO\(_2\)-N\(_2\) collisions: selectivity control by the anisotropy of the interaction. J. Comput. Chem. 37, 1463–1475 (2016)

    Article  Google Scholar 

  29. Pacifici, L., Verdicchio, M., Faginas-Lago, N., Lombardi, A., Costantini, A.: A high-level ab initio study of the N2 + N2 reaction channel. J. Comput. Chem. 34(31), 2668–2676 (2013)

    Article  Google Scholar 

  30. Lombardi, A., Faginas-Lago, N., Pacifici, L., Grossi, G.: Energy transfer upon collision of selectively excited CO\(_2\) molecules: state-to-state cross sections and probabilities for modeling of atmospheres and gaseous flows. J. Chem. Phys. 143, 034307 (2015)

    Article  Google Scholar 

  31. Celiberto, R., et al.: Atomic and molecular data for spacecraft re-entry plasmas. Plasma Sources Sci. Technol. 25(3), 033004 (2016)

    Article  Google Scholar 

  32. Faginas-Lago, N., Lombardi, A., Albertí, M.: Aqueous n-methylacetamide: new analytic potentials and a molecular dynamics study. J. Mol. Liq. 224, 792–800 (2016)

    Article  Google Scholar 

  33. Palazzetti, F., Munusamy, E., Lombardi, A., Grossi, G., Aquilanti, V.: Spherical and hyperspherical representation of potential energy surfaces for intermolecular interactions. Int. J. Quantum Chem. 111(2), 318–332 (2011)

    Article  Google Scholar 

  34. Lombardi, A., Palazzetti, F.: A comparison of interatomic potentials for rare gas nanoaggregates. J. Mol. Struct. (Thoechem) 852(1–3), 22–29 (2008)

    Article  Google Scholar 

  35. Barreto, P.R., Albernaz, A.F., Palazzetti, F., Lombardi, A., Grossi, G., Aquilanti, V.: Hyperspherical representation of potential energy surfaces: intermolecular interactions in tetra-atomic and penta-atomic systems. Phys. Scr. 84(2), 028111 (2011)

    Article  Google Scholar 

  36. Barreto, P.R., et al.: Potential energy surfaces for interactions of H\(_2\)O with H\(_2\), N\(_2\) and O\(_2\): a hyperspherical harmonics representation, and a minimal model for the H\(_2\)O-rare-gas-atom systems. Comput. Theor. Chem. 990, 53–61 (2012)

    Article  Google Scholar 

  37. Lombardi, A., Pirani, F., Bartolomei, M., Coletti, C., Laganà, A.: A full dimensional potential energy function and the calculation of the state-specific properties of the CO+ N\(_2\) inelastic processes within an Open Molecular Science Cloud perspective. Front. Chem. 7, 309 (2019)

    Article  Google Scholar 

  38. Faginas Lago, N., Lombardi, A., Vekeman, J., Rosi, M., et al.: Molecular dynamics of CH\(_4\)/N\(_2\) mixtures on a flexible graphene layer: adsorption and selectivity case study. Front. Chem. 7, 386 (2019)

    Article  Google Scholar 

  39. Nakamura, M., et al.: Dynamical, spectroscopic and computational imaging of bond breaking in photodissociation: roaming and role of conical intersections. Faraday Discuss. 177, 77–98 (2015)

    Article  Google Scholar 

  40. Aquilanti, V., Lombardi, A., Yurtsever, E.: Global view of classical clusters: the hyperspherical approach to structure and dynamics. Phys. Chem. Chem. Phys. 4(20), 5040–5051 (2002)

    Article  Google Scholar 

  41. Sevryuk, M.B., Lombardi, A., Aquilanti, V.: Hyperangular momenta and energy partitions in multidimensional many-particle classical mechanics: the invariance approach to cluster dynamics. Phys. Rev. A 72(3), 033201 (2005)

    Article  MathSciNet  Google Scholar 

  42. Castro Palacio, J., Velazquez Abad, L., Lombardi, A., Aquilanti, V., Rubayo Soneira, J.: Normal and hyperspherical mode analysis of NO-doped Kr crystals upon Rydberg excitation of the impurity. J. Chem. Phys. 126(17), 174701 (2007)

    Article  Google Scholar 

  43. Lombardi, A., Palazzetti, F., Aquilanti, V.: Molecular dynamics of chiral molecules in hyperspherical coordinates. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11624, pp. 413–427. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24311-1_30

    Chapter  Google Scholar 

  44. Lombardi, A., Palazzetti, F., Sevryuk, M.B.: Hyperspherical coordinates and energy partitions for reactive processes and clusters. In: AIP Conference Proceedings, vol. 2186, p. 030014. AIP Publishing LLC (2019)

    Google Scholar 

  45. Lombardi, A., Palazzetti, F.: Chirality in molecular collision dynamics. J. Phys.: Condens. Matter 30(6), 063003 (2018)

    Google Scholar 

  46. Lombardi, A., Palazzetti, F., Peroncelli, L., Grossi, G., Aquilanti, V., Sevryuk, M.: Few-body quantum and many-body classical hyperspherical approaches to reactions and to cluster dynamics. Theoret. Chem. Acc. 117(5–6), 709–721 (2007)

    Article  Google Scholar 

  47. Aquilanti, V., Grossi, G., Lombardi, A., Maciel, G.S., Palazzetti, F.: Aligned molecular collisions and a stereodynamical mechanism for selective chirality. Rend. Fis. Acc. Lincei 22, 125–135 (2011)

    Article  Google Scholar 

  48. Lombardi, A., Faginas-Lago, N., Aquilanti, V.: The invariance approach to structure and dynamics: classical hyperspherical coordinates. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11624, pp. 428–438. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24311-1_31

    Chapter  Google Scholar 

  49. Caglioti, C., Dos Santos, R.F., Lombardi, A., Palazzetti, F., Aquilanti, V.: Screens displaying structural properties of aminoacids in polypeptide chains: alanine as a case study. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11624, pp. 439–449. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24311-1_32

    Chapter  Google Scholar 

  50. Caglioti, C., Ferreira, R.d.S., Palazzetti, F., Lombardi, A., Aquilanti, V.: Screen representation of structural properties of alanine in polypeptide chains. In: AIP Conference Proceedings, vol. 2186, p. 030015. AIP Publishing LLC (2019)

    Google Scholar 

  51. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. University Press, Cambridge (1990)

    MATH  Google Scholar 

  52. Gatti, F., Lung, C.: Vector parametrization of the \(n\)-atom problem in quantum mechanics. I. Jacobi vectors. J. Chem. Phys. 108, 8804–8820 (1998)

    Article  Google Scholar 

  53. Aquilanti, V., Lombardi, A., Yurtsever, E.: Global view of classical clusters: the hyperspherical approach to structure and dynamics. Phys. Chem. Chem. Phys. 4, 5040–5051 (2002)

    Article  Google Scholar 

  54. Aquilanti, V., Lombardi, A., Sevryuk, M.B.: Phase-space invariants for aggregates of particles: hyperangular momenta and partitions of the classical kinetic energy. J. Chem. Phys. 121, 5579 (2004)

    Article  Google Scholar 

  55. Aquilanti, V., Carmona Novillo, E., Garcia, E., Lombardi, A., Sevryuk, M.B., Yurtsever, E.: Invariant energy partitions in chemical reactions and cluster dynamics simulations. Comput. Mat. Sci. 35, 187–191 (2006)

    Article  Google Scholar 

  56. Aquilanti, V., Lombardi, A., Sevryuk, M.B., Yurtsever, E.: Phase-space invariants as indicators of the critical behavior of nanoaggregates. Phys. Rev. Lett. 93, 113402 (2004)

    Article  Google Scholar 

  57. Calvo, F., Gadea, X., Lombardi, A., Aquilanti, V.: Isomerization dynamics and thermodynamics of ionic argon clusters. J. Chem. Phys. 125, 114307 (2006)

    Article  Google Scholar 

  58. Lombardi, A., Aquilanti, V., Yurtsever, E., Sevryuk, M.B.: Specific heats of clusters near a phase transition: energy partitions among internal modes. Chem. Phys. Lett. 30, 424–428 (2006)

    Article  Google Scholar 

  59. Lombardi, A., Maciel, G.S., Palazzetti, F., Grossi, G., Aquilanti, V.: Alignment and chirality in gaseous flows. J. Vacuum Soc. Jpn. 53(11), 645–653 (2010)

    Article  Google Scholar 

  60. Palazzetti, F., et al.: Aligned molecules: chirality discrimination in photodissociation and in molecular dynamics. Rendiconti Lincei 24(3), 299–308 (2013)

    Article  Google Scholar 

  61. Littlejohn, R.G., Mitchell, A., Aquilanti, V.: Quantum dynamics of kinematic invariants in tetra-and polyatomic systems. Phys. Chem. Chem. Phys. 1, 1259–1264 (1999)

    Article  Google Scholar 

  62. Berman, H., et al.: The protein data bank. Nucleic Acid Res. 28, 235–242 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to the Dipartimento di Chimica, Biologia e Biotecnologie dell’Università di Perugia (FRB, Fondo per la Ricerca di Base 2019 and 2020) and to the MIUR and the University of Perugia for the financial support of the AMIS project through the program “Dipartimenti di Eccellenza”. A. L. acknowledges financial support from MIUR PRIN 2015 (contract 2015F59J3R_002). A.L. thanks the OU Supercomputing Center for Education & Research (OSCER) at the University of Oklahoma, for allocated computing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lombardi Andrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andrea, L., Faginas-Lago, N. (2021). Classification of Biomolecules by Invariant Shape Coordinates and Deformation Indexes. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12958. Springer, Cham. https://doi.org/10.1007/978-3-030-87016-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87016-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87015-7

  • Online ISBN: 978-3-030-87016-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics