Skip to main content

Numerical Simulation of the Reactive Transport at Pore Scale in 3D

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

The paper presents a finite-difference algorithm for reactive transport simulation at the pore scale in 3D. We simulate the matrix dissolution and crystal precipitation due to heterogeneous reactions, acquired at the fluid-solid interface. The fluid flow and the reactive transport are computed using finite difference method on a regular rectangular mesh, whereas the immersed boundary conditions are applied to account for irregular interface geometry. The time-evolving pore-to-matrix surface is defined implicitly by the level-set method. The algorithm is implemented using Graphic Processor Units.

The research was supported by the Russian Science Foundation grant no. 21-71-20003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Khulaifi, Y., Lin, Q., Blunt, M., Bijeljic, B.: Pore-scale dissolution by CO2 saturated brine in a multi-mineral carbonate at reservoir conditions: impact of physical and chemical heterogeneity (2019). https://doi.org/10.5285/52b08e7f-9fba-40a1-b0b5-dda9a3c83be2

  2. Al-Khulaifi, Y., Lin, Q., Blunt, M.J., Bijeljic, B.: Pore-scale dissolution by Co2 saturated brine in a multimineral carbonate at reservoir conditions: impact of physical and chemical heterogeneity. Water Resour. Res. 55(4), 3171–3193 (2019)

    Article  Google Scholar 

  3. Alizadeh, A.H., Akbarabadi, M., Barsotti, E., Piri, M., Fishman, N., Nagarajan, N.: Salt precipitation in ultratight porous media and its impact on pore connectivity and hydraulic conductivity. Water Resour. Res. 54(4), 2768–2780 (2018)

    Article  Google Scholar 

  4. Costa, T.B., Kennedy, K., Peszynska, M.: Hybrid three-scale model for evolving pore-scale geometries. Comput. Geosci. 22(3), 925–950 (2018)

    Article  MathSciNet  Google Scholar 

  5. Dadda, A., et al.: Characterization of microstructural and physical properties changes in biocemented sand using 3D x-ray microtomography. Acta Geotech. 12(5), 955–970 (2017). https://doi.org/10.1007/s11440-017-0578-5

    Article  Google Scholar 

  6. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999)

    Article  MathSciNet  Google Scholar 

  7. Ghommem, M., Zhao, W., Dyer, S., Qiu, X., Brady, D.: Carbonate acidizing: modeling, analysis, and characterization of wormhole formation and propagation. J. Petrol. Sci. Eng. 131, 18–33 (2015)

    Article  Google Scholar 

  8. Gibou, F., Fedkiw, R., Osher, S.: A review of level-set methods and some recent applications. J. Comput. Phys. 353, 82–109 (2018)

    Article  MathSciNet  Google Scholar 

  9. Johansen, H., Colella, P.: A cartesian grid embedded boundary method for Poisson’s equation on irregular domains. J. Comput. Phys. 147(1), 60–85 (1998)

    Article  MathSciNet  Google Scholar 

  10. Kang, Q., Chen, L., Valocchi, A.J., Viswanathan, H.S.: Pore-scale study of dissolution-induced changes in permeability and porosity of porous media. J. Hydrol. 517, 1049–1055 (2014)

    Article  Google Scholar 

  11. Kaya, E., Zarrouk, S.J.: Reinjection of greenhouse gases into geothermal reservoirs. Int. J. Greenhouse Gas Control 67, 111–129 (2017)

    Article  Google Scholar 

  12. Khachkova, T., Lisitsa, V., Reshetova, G., Tcheverda, V.: GPU-based algorithm for evaluating the electrical resistivity of digital rocks. Comput. Math. Appl. 82, 200–211 (2021)

    Article  MathSciNet  Google Scholar 

  13. Lebedev, M., Zhang, Y., Sarmadivaleh, M., Barifcani, A., Al-Khdheeawi, E., Iglauer, S.: Carbon geosequestration in limestone: pore-scale dissolution and geomechanical weakening. Int. J. Greenhouse Gas Control 66, 106–119 (2017)

    Article  Google Scholar 

  14. Li, X., Huang, H., Meakin, P.: Level set simulation of coupled advection-diffusion and pore structure evolution due to mineral precipitation in porous media. Water Resour. Res. 44(12), W12407 (2008)

    Article  Google Scholar 

  15. Lisitsa, V., Bazaikin, Y., Khachkova, T.: Computational topology-based characterization of pore space changes due to chemical dissolution of rocks. Appl. Math. Model. 88, 21–37 (2020). https://doi.org/10.1016/j.apm.2020.06.037

    Article  MathSciNet  Google Scholar 

  16. Luo, K., Zhuang, Z., Fan, J., Haugen, N.E.L.: A ghost-cell immersed boundary method for simulations of heat transfer in compressible flows under different boundary conditions. Int. J. Heat Mass Transf. 92, 708–717 (2016)

    Article  Google Scholar 

  17. Miller, K., Vanorio, T., Keehm, Y.: Evolution of permeability and microstructure of tight carbonates due to numerical simulation of calcite dissolution. J. Geophys. Res.: Solid Earth 122(6), 4460–4474 (2017)

    Article  Google Scholar 

  18. Molins, S., et al.: Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments. Environ. Sci. Technol. 48(13), 7453–7460 (2014)

    Article  Google Scholar 

  19. Osher, S., Fedkiw, R.P.: Level set methods: an overview and some recent results. J. Comput. Phys. 169(2), 463–502 (2001)

    Article  MathSciNet  Google Scholar 

  20. Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10, 252–271 (1972)

    Article  Google Scholar 

  21. Prokhorov, D., Lisitsa, V., Bazaikin, Y.: Digital image reduction for the analysis of topological changes in the pore space of rock matrix. Comput. Geotech. 136, 104171 (2021)

    Article  Google Scholar 

  22. Sotiropoulos, F., Yang, X.: Immersed boundary methods for simulating fluid-structure interaction. Prog. Aerosp. Sci. 65, 1–21 (2014)

    Article  Google Scholar 

  23. Steefel, C.I., et al.: Reactive transport codes for subsurface environmental simulation. Comput. Geosci. 19(3), 445–478 (2015)

    Article  MathSciNet  Google Scholar 

  24. Sussman, M., Fatemi, E.: An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20(4), 1165–1191 (1999)

    Article  MathSciNet  Google Scholar 

  25. Xu, Z., Meakin, P.: Phase-field modeling of solute precipitation and dissolution. J. Chem. Phys. 129(1), 014705 (2008)

    Article  Google Scholar 

  26. Yoon, H., Valocchi, A.J., Werth, C.J., Dewers, T.: Pore-scale simulation of mixing-induced calcium carbonate precipitation and dissolution in a microfluidic pore network. Water Resour. Res. 48(2), W02524 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Lisitsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lisitsa, V., Khachkova, T., Prokhorov, D., Bazaikin, Y., Yang, Y. (2021). Numerical Simulation of the Reactive Transport at Pore Scale in 3D. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12958. Springer, Cham. https://doi.org/10.1007/978-3-030-87016-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87016-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87015-7

  • Online ISBN: 978-3-030-87016-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics