Skip to main content

Intermolecular Forces for the Interaction of H\(_{2}\)O–Graphtriyne Membrane: Contribution of Induction Effects

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Among various carbon allotropes, graphynes are a class of two-dimensional nanosheets, analogous to graphene, that recently have been considered as ideal nanofilters for small gas molecules. In this work, the authors report molecular dynamics (MD) simulations of graphtriyne-H\(_{2}\)O system performed using refined potentials. Intermolecular forces are the key points that govern the adsorption dynamics of gaseous molecules on graphynes surfaces. In order to define the full intermolecular potentials, the Improved Lennard-Jones (ILJ) semi-empirical potential have been subsequently modified by adding an induction term (ind) to take into account the polarizability of H\(_{2}\)O molecules. Evaluation of the computational cost and the distribution of H\(_{2}\)O molecules over graphtriyne membrane have been assessed by comparing the intermolecular forces with and without inclusion of induction potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faginas-Lago, N., Lombardi, A., Albertí, M., Grossi, G.: Accurate analytic intermolecular potential for the simulation of Na\(^{+}\) and K\(^{+}\) ion hydration in liquid water. J. Mol. Liq. 204, 192–197 (2015). https://doi.org/10.1016/j.molliq.2015.01.029

    Article  Google Scholar 

  2. Faginas-Lago, N., Albertí, M., Laganà, A., Lombardi, A.: Ion-water cluster molecular dynamics using a semiempirical intermolecular potential. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9156, pp. 355–370. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21407-8_26

    Chapter  Google Scholar 

  3. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114(25), 10024–10035 (1992). https://doi.org/10.1021/ja00051a040

    Article  Google Scholar 

  4. Pearlman, D., et al.: AMBER, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 91, 1–41 (1995). https://doi.org/10.1016/0010-4655(95)00041-D

  5. Faginas-Lago, N., Albertí, M., Laganà, A., Lombardi, A.: Water (H\(_{2}\)O)\(_{m}\) or benzene (C\(_{6}\)H\(_{6}\)))\(_{n}\) aggregates to solvate the K\(^{+}\)? In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) Computational Science and Its Applications -ICCSA 2013, pp. 1–15. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_1

  6. Lago, N.F., Albertí, M., Laganà, A., Lombardi, A., Pacifici, L., Costantini, A.: The molecular stirrer catalytic effect in methane ice formation. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 585–600. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_40

    Chapter  Google Scholar 

  7. Das, A.K., et al.: Development of an advanced force field for water using variational energy decomposition analysis. J. Chem. Theory Comput. 15(9), 5001–5013 (2019). https://doi.org/10.1021/acs.jctc.9b00478

    Article  Google Scholar 

  8. Wang, H., Yang, W.: Force field for water based on neural network. J. Phys. Chem. Lett. 9(12), 3232–3240 (2018). https://doi.org/10.1021/acs.jpclett.8b01131

    Article  Google Scholar 

  9. Albertí, M., Pirani, F., Laganà, A.: Carbon dioxide clathrate hydrates: selective role of intermolecular interactions and action of the SDS catalyst. J. Phys. Chem. A 117(32), 6991–7000 (2013). https://doi.org/10.1021/jp3126158

    Article  Google Scholar 

  10. Albertí, M., Aguilar, A., Cappelletti, D., Laganà, A., Pirani, F.: On the development of an effective model potential to describe water interaction in neutral and ionic clusters. Int. J. Mass Spectrom. 280, 50–56 (2009). https://doi.org/10.1016/j.ijms.2008.07.018

    Article  Google Scholar 

  11. Liu, B., Smit, B.: Molecular simulation studies of separation of CO\(_{2}\)/N\(_{2}\), CO\(_{2}\)/CH\(_{4}\), and CH\(_{4}\)/N\(_{2}\) by ZIFs. J. Phys. Chem. C 114(18), 8515–8522 (2010). https://doi.org/10.1021/jp101531m

    Article  Google Scholar 

  12. Faginas-Lago, N., Albertí, M., Costantini, A., Laganà, A., Lombardi, A., Pacifici, L.: An innovative synergistic grid approach to the computational study of protein aggregation mechanisms. J. Mol. Model. 20(7), 2226 (2014). https://doi.org/10.1007/s00894-014-2226-4

    Article  Google Scholar 

  13. Rampino, S., Faginas-Lago, N., Laganà, A., Huarte-Larrañaga, F.: An extension of the grid empowered molecular simulator to quantum reactive scattering. J. Comput. Chem. 33(6), 708–714 (2012). https://doi.org/10.1002/jcc.22878

    Article  Google Scholar 

  14. Lombardi, A., Faginas-Lago, N., Laganà, A.: Grid calculation tools for massive applications of collision dynamics simulations: carbon dioxide energy transfer. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 627–639. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_43

    Chapter  Google Scholar 

  15. Lombardi, A., Faginas-Lago, N., Pacifici, L., Grossi, G.: Energy transfer upon collision of selectively excited CO\(_{2}\) molecules: State-to-state cross sections and probabilities for modeling of atmospheres and gaseous flows. J. Chem. Phys. 143(3), 034307 (2015). https://doi.org/10.1063/1.4926880

  16. Faginas-Lago, N., Lombardi, A., Pacifici, L., Costantini, A.: Design and implementation of a grid application for direct calculations of reactive rates. Comput. Theor. Chem. 1022, 103–107 (2013). https://doi.org/10.1016/j.comptc.2013.08.014

    Article  Google Scholar 

  17. DuBay, K.H., Hall, M.L., Hughes, T.F., Wu, C., Reichman, D.R., Friesner, R.A.: Accurate force field development for modeling conjugated polymers. J. Chem. Theory Comput. 8(11), 4556–4569 (2012). https://doi.org/10.1021/ct300175w

    Article  Google Scholar 

  18. Faginas-Lago, N., Apriliyanto, Y.B., Lombardi, A.: Molecular simulations of CO\(_{2}\)/N\(_{2}\)/H\(_{2}\)O gaseous mixture separation in graphtriyne membrane. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11624, pp. 374–387. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24311-1_27

    Chapter  Google Scholar 

  19. Smit, B.: Carbon capture and storage: introductory lecture. Faraday Discuss. 192, 9–25 (2016). https://doi.org/10.1039/C6FD00148C

    Article  Google Scholar 

  20. Bui, M., et al.: Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018). https://doi.org/10.1039/C7EE02342A

    Article  Google Scholar 

  21. Srinivas, G., Krungleviciute, V., Guo, Z.X., Yildirim, T.: Exceptional CO\(_{2}\) capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ. Sci. 7, 335–342 (2014). https://doi.org/10.1039/C3EE42918K

    Article  Google Scholar 

  22. Ghosh, S., Sevilla, M., Fuertes, A.B., Andreoli, E., Ho, J., Barron, A.R.: Defining a performance map of porous carbon sorbents for high-pressure carbon dioxide uptake and carbon dioxide-methane selectivity. J. Mater. Chem. A 4, 14739–14751 (2016). https://doi.org/10.1039/C6TA04936B

    Article  Google Scholar 

  23. Kim, J., Lin, L.C., Swisher, J.A., Haranczyk, M., Smit, B.: Predicting large CO\(_{2}\) adsorption in aluminosilicate zeolites for postcombustion carbon dioxide capture. J. Am. Chem. Soc. 134(46), 18940–18943 (2012). https://doi.org/10.1021/ja309818u

    Article  Google Scholar 

  24. Lin, L.C., et al.: Understanding CO\(_{2}\) dynamics in metal-organic frameworks with open metal sites. Angew. Chem. Int. Ed. 52(16), 4410–4413 (2013). https://doi.org/10.1002/anie.201300446

    Article  Google Scholar 

  25. Schrier, J.: Carbon dioxide separation with a two-dimensional polymer membrane. ACS Appl. Mater. Interfaces. 4(7), 3745–3752 (2012). https://doi.org/10.1021/am300867d

    Article  Google Scholar 

  26. Xiang, Z., et al.: Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture. J. Am. Chem. Soc. 137(41), 13301–13307 (2015). https://doi.org/10.1021/jacs.5b06266

    Article  Google Scholar 

  27. Liu, H., et al.: A hybrid absorption-adsorption method to efficiently capture carbon. Nat. Commun. 5, 5147 (2014). https://doi.org/10.1038/ncomms6147

    Article  Google Scholar 

  28. Apriliyanto, Y.B., Darmawan, N., Faginas-Lago, N., Lombardi, A.: Two-dimensional diamine-linked covalent organic frameworks for co 2/n 2 capture and separation: theoretical modeling and simulations. Phys. Chem. Chem. Phys. 22(44), 25918–25929 (2020). https://doi.org/10.1039/D0CP04258G

    Article  Google Scholar 

  29. Bartolomei, M., Carmona-Novillo, E., Giorgi, G.: First principles investigation of hydrogen physical adsorption on graphynes’ layers. Carbon 95, 1076–1081 (2015). https://doi.org/10.1016/j.carbon.2015.08.118

    Article  Google Scholar 

  30. Ganesan, A., Shaijumon, M.: Activated graphene-derived porous carbon with exceptional gas adsorption properties. Microporous Mesoporous Mater. 220, 21–27 (2015). https://doi.org/10.1016/j.micromeso.2015.08.021

    Article  Google Scholar 

  31. Apriliyanto, Y.B., et al.: Nanostructure selectivity for molecular adsorption and separation: the case of graphyne layers. J. Phys. Chem. C 122(28), 16195–16208 (2018). https://doi.org/10.1021/acs.jpcc.8b04960

    Article  Google Scholar 

  32. Faginas-Lago, N., Yeni, D., Huarte, F., Wang, Y., Alcamí, M., Martin, F.: Adsorption of hydrogen molecules on carbon nanotubes using quantum chemistry and molecular dynamics. J. Phys. Chem. A 120(32), 6451–6458 (2016). https://doi.org/10.1021/acs.jpca.5b12574

    Article  Google Scholar 

  33. Yeamin, M.B., Faginas-Lago, N., Albertí, M., García Cuesta, I., Sánchez-Marín, J., Sánchez de Merás, A.: Multi-scale theoretical investigation of molecular hydrogen adsorption over graphene: coronene as a case study. RSC Adv. 4, 54447–54453 (2014). https://doi.org/10.1039/C4RA08487J

  34. Faginas-Lago, N., Apriliyanto, Y.B., Lombardi, A.: Confinement of co\(_{2}\) inside carbon nanotubes. Eur. Phys. J. D 75(161), 1–10 (2021). https://doi.org/10.1140/epjd/s10053-021-00176-7

    Article  Google Scholar 

  35. James, A., et al.: Graphynes: indispensable nanoporous architectures in carbon flatland. RSC Adv. 8, 22998–23018 (2018). https://doi.org/10.1039/C8RA03715A

    Article  Google Scholar 

  36. Bartolomei, M., Giorgi, G.: A novel nanoporous graphite based on graphynes: First-principles structure and carbon dioxide preferential physisorption. ACS Appl. Mater. Interfaces. 8(41), 27996–28003 (2016). https://doi.org/10.1021/acsami.6b08743

    Article  Google Scholar 

  37. Lim, J.R., Yang, C.T., Kim, J., Lin, L.C.: Transferability of CO\(_{2}\) force fields for prediction of adsorption properties in all-silica zeolites. J. Phys. Chem. C 122(20), 10892–10903 (2018). https://doi.org/10.1021/acs.jpcc.8b02208

    Article  Google Scholar 

  38. Boyd, P.G., Moosavi, S.M., Witman, M., Smit, B.: Force-field prediction of materials properties in metal-organic frameworks. J. Phys. Chem. Lett. 8(2), 357–363 (2017). https://doi.org/10.1021/acs.jpclett.6b02532

    Article  Google Scholar 

  39. Lin, L.C., Lee, K., Gagliardi, L., Neaton, J.B., Smit, B.: Force-field development from electronic structure calculations with periodic boundary conditions: applications to gaseous adsorption and transport in metal-organic frameworks. J. Chem. Theory Comput. 10(4), 1477–1488 (2014). https://doi.org/10.1021/ct500094w

    Article  Google Scholar 

  40. Vekeman, J., García Cuesta, I., Faginas-Lago, N., Wilson, J., Sánchez-Marín, J., Sánchez de Merás, A.: Potential models for the simulation of methane adsorption on graphene: development and CCSD(T) benchmarks. Phys. Chem. Chem. Phys. 20(39), 25518–25530 (2018). https://doi.org/10.1039/C8CP03652G

  41. Faginas-Lago, N., Apriliyanto, Y.B., Lombardi, A.: Carbon capture and separation from CO\(_2\)/N\(_2\)/H\(_2\)O gaseous mixtures in bilayer graphtriyne: a molecular dynamics study. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12255, pp. 489–501. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_36

    Chapter  Google Scholar 

  42. de Aragão, E.V.F., Faginas-Lago, N., Apriliyanto, Y.B., Lombardi, A.: Gas adsorption on graphtriyne membrane: impact of the induction interaction term on the computational cost. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12255, pp. 513–525. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_38

    Chapter  Google Scholar 

  43. Pirani, P., Brizi, S., Roncaratti, L., Casavecchia, P., Cappelletti, D., Vecchiocattivi, F.: Beyond the Lennard-Jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys. Chem. Chem. Phys. 10, 5489–5503 (2008). https://doi.org/10.1039/B808524B

    Article  Google Scholar 

  44. Lombardi, A., Laganà, A., Pirani, F., Palazzetti, F., Lago, N.F.: Carbon oxides in gas flows and earth and planetary atmospheres: state-to-state simulations of energy transfer and dissociation reactions. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 17–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39643-4_2

    Chapter  Google Scholar 

  45. Faginas-Lago, N., Albertí, M., Lombardi, A., Pirani, F.: A force field for acetone: the transition from small clusters to liquid phase investigated by molecular dynamics simulations. Theor. Chem. Acc. 135(7), 1–9 (2016). https://doi.org/10.1007/s00214-016-1914-9

  46. Lombardi, A., Faginas-Lago, N., Gaia, G., Federico, P., Aquilanti, V.: Collisional energy exchange in CO\(_2\)–N\(_2\) gaseous mixtures. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 246–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_19

    Chapter  Google Scholar 

  47. Albertí, M., Faginas-Lago, N.: Ion size influence on the ar solvation shells of M\(^{+}\)C\(_{6}\)F\(_{6}\) clusters (M = Na, K, Rb, Cs). J. Phys. Chem. A 116(12), 3094–3102 (2012). https://doi.org/10.1021/jp300156k

    Article  Google Scholar 

  48. Pirani, F., Albertí, M., Castro, A., Moix Teixidor, M., Cappelletti, D.: Atom-bond pairwise additive representation for intermolecular potential energy surfaces. Chem. Phys. Lett. 394(1–3), 37–44 (2004). https://doi.org/10.1016/j.cplett.2004.06.100

    Article  Google Scholar 

  49. Pacifici, L., Verdicchio, M., Faginas-Lago, N., Lombardi, A., Costantini, A.: A high-level ab initio study of the N\(_2\) + N\(_2\) reaction channel. J. Comput. Chem. 34(31), 2668–2676 (2013). https://doi.org/10.1002/jcc.23415

    Article  Google Scholar 

  50. Albertí, M., et al.: Small water clusters: the cases of rare gas-water, alkali ion-water and water dimer. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008. LNCS, vol. 5072, pp. 1026–1035. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69839-5_78

    Chapter  Google Scholar 

  51. Smith, W., Yong, C., Rodger, P.: DL\(\_\)POLY: application to molecular simulation. Mol. Simul. 28(5), 385–471 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

N. F.-L and A. L. thank the MIUR and the University of Perugia for the financial support of the AMIS project through the “Dipartimenti di Eccellenza” program. N. F.-L also acknowledges the Fondo Ricerca di Base 2020 (RICBASE2020FAGINAS) del Dipartimento di Chimica, Biologia e Biotecnologie della Università di Perugia for financial support and the Herla Project for allocated computing time. A. L. acknowledges financial support from MIUR PRIN 2015 (contract 2015F59J3R 002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noelia Faginas-Lago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faginas-Lago, N., Apriliyanto, Y.B., Lombardi, A. (2021). Intermolecular Forces for the Interaction of H\(_{2}\)O–Graphtriyne Membrane: Contribution of Induction Effects. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12958. Springer, Cham. https://doi.org/10.1007/978-3-030-87016-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87016-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87015-7

  • Online ISBN: 978-3-030-87016-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics