Abstract
Selective formulations and selective reporting of facts in political news are deliberately used to create particular identities of different political sides. This becomes evident in media dialogue reporting about political conflicts. In contrast to most NLP-based studies of linguistic bias, we engage critically with its nature, aiming at a later de-biasing or at least raising awareness about linguistic bias in political news. We found inspiration in conversation analysis (CA), membership categorisation analysis (MCA) and a game-theoretic approach to discourse called epistemic message exchange (ME) games. We identified three types of bias: selective reports about facts, selective formulations when reporting about the same facts, and different histories built up by the differences in the first two. We extend the epistemic ME games model with findings from a qualitative study.
We thank the ANR PRCI grant SLANT, the Luxembourgish National Research Fund, INTER-SLANT 13320890 and the 3IA Institute ANITI funded by the ANR-19-PI3A-0004 grant for research support.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Available at https://github.com/sviatlanahoehn/BelElect.
- 2.
- 3.
Using the definitions of first order beliefs, \(S\), the set of strategies, and types, [5] define higher order beliefs, beliefs that players or the Jury have about the beliefs of other players (and the Jury) and fill out the epistemic picture of our players.
- 4.
For a definition of independence see [5].
- 5.
Otryad Militsyi Osobogo Nasnacheniya, En.: Special police detachment.
- 6.
Lebedev, Executive Secretary of the CIS.
References
Akbari, A., Gabdulhakov, R.: Platform surveillance and resistance in Iran and Russia: the case of Telegram. Surveill. Soc. 17(1/2), 223–231 (2019)
Aleksandrova, D., Lareau, F., Ménard, P.A.: Multilingual sentence-level bias detection in Wikipedia. In: Proceedings International Conference on Recent Advances in Natural Language Processing (RANLP 2019), Varna, Bulgaria, pp. 42–51 (2019)
Asher, N., Hunter, J., Paul, S.: Bias in semantic and discourse interpretation. Linguist. Philos. 1–37 (2021). https://doi.org/10.1007/s10988-021-09334-x
Asher, N., Lascarides, A.: Logics of Conversation. Cambridge University Press, Cambridge (2003)
Asher, N., Paul, S.: Strategic conversations under imperfect information: epistemic message exchange games. J. Logic Lang. Inform. 27(4), 343–385 (2018)
Beukeboom, C.J., Burgers, C.: Linguistic bias. In: Oxford Research Encyclopedia, Communication. Oxford University Press (2020)
Blodgett, S.L., Barocas, S., Daumé III, H., Wallach, H.: Language (technology) is power: a critical survey of “bias” in NLP. In: Proceedings of the 58th ACL Meeting, pp. 5454–5476. ACL (2020)
Chen, W.F., Al-Khatib, K., Wachsmuth, H., Stein, B.: Analyzing political bias and unfairness in news articles at different levels of granularity. arXiv preprint arXiv:2010.10652 (2020)
Kvetkin, P.D.: Russian tiktok: a space not free from politics. In: MEDIAObrazovaniye: Media kak Totalnaya Povsednevnost, pp. 370–374 (2020)
Ferrer Aran, X., van Nuenen, T., Such, J., Criado Pacheco, N.: Discovering and categorising language biases in Reddit. In: Proceedings of the 15th International AAAI Conference on Web and Social Media (ICWSM 2021), pp. 140–151 (2021)
Fischer, K.: Designing Speech for a Recipient: The Roles of Partner Modeling, Alignment and Feedback in So-Called ‘Simplified Registers’, vol. 270. John Benjamins Publishing Company (2016)
Freiberg, J., Freebody, P.: Applying membership categorisation analysis to discourse: when the ‘tripwire critique’ is not enough. In: Le, T., Le, Q., Short, M. (eds.) Critical Discourse Analysis: An Interdisciplinary Perspective, pp. 49–64. Nova Science Publishers (2009)
Gibson, W., Roca-Cuberes, C.: Constructing blame for school exclusion in an online comments forum: membership categorisation analysis and endogenous category work. Discourse Context Media 32, 100331 (2019)
Harsanyi, J.C.: Games with incomplete information played by “Bayesian” players, I–III Part I. The basic model. Manag. Sci. 14(3), 159–182 (1967)
Härtl, H.: Name-informing and distancing sogenannt ‘so-called’: name mentioning and the lexicon-pragmatics interface. Z. Sprachwiss. 37(2), 139–169 (2018)
Lazaridou, K., Krestel, R.: Identifying political bias in news articles. Bull. IEEE Tech. Comm. Digit. Libr. 12 (2016)
McLay, K.F.: Geeks, gamers, and girls: revealing diverse digital identities with membership categorisation analysis. Discourse Stud. Cult. Polit. Educ. 40(6), 946–961 (2019)
Philo, G.: Political advertising and popular belief. In: The Glasgow Media Group Reader, vol. II: Industry, Economy, War and Politics, pp. 184–197 (1995)
Reddy, R.R., Duggenpudi, S.R., Mamidi, R.: Detecting political bias in news articles using headline attention. In: Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, Florence, Italy, pp. 77–84. Association for Computational Linguistics (2019)
Sacks, H.: On the analyzability of stories by children. In: Directions in Sociolinguistics. The Ethnography of Communications, pp. 325–345. Holt, Rinehart and Winston (1972)
Sacks, H.: Lectures on Conversation, vol. 1 and 2. Blackwell (1995)
Schegloff, E.A.: Sequence Organization in Interaction: Volume 1: A Primer in Conversation Analysis. Cambridge University Press (2007)
Schegloff, E.A.: A tutorial on membership categorization. J. Pragmat. 39(3), 462–482 (2007)
Spranz-Fogasy, T.: Interaktionsprofile: Die Herausbildung individueller Handlungstypik in Gesprächen. Verlag für Gesprächsforschung, Radolfzell (2002)
Stivers, T.: Sequence organization. In: Sidnell, J., Stivers, T. (eds.) The Handbook of Conversation Analysis, chap. 10, pp. 191–209. Wiley (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Höhn, S., Asher, N., Mauw, S. (2021). Examining Linguistic Biases in Telegram with a Game Theoretic Analysis. In: Bright, J., Giachanou, A., Spaiser, V., Spezzano, F., George, A., Pavliuc, A. (eds) Disinformation in Open Online Media. MISDOOM 2021. Lecture Notes in Computer Science(), vol 12887. Springer, Cham. https://doi.org/10.1007/978-3-030-87031-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-87031-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87030-0
Online ISBN: 978-3-030-87031-7
eBook Packages: Computer ScienceComputer Science (R0)