Skip to main content

Resource Allocation Challenges in the Cloud and Edge Continuum

  • Chapter
  • First Online:
Advances in Computing, Informatics, Networking and Cybersecurity

Abstract

We witness a shift of the digital infrastructures, from the current model that consists of a plethora of heterogeneous and isolated computing, storage and networking resources under centralized control, towards a cloud continuum that serves innovative applications in all sectors. This, in essence, involves the distribution of computation and storage across multiple resource types and domains. Thus, the realization of the cloud continuum through the integration of edge, fog and cloud resources under transparent orchestration is an important step in this direction. However, heterogeneous distributed infrastructures present a number of challenges regarding their management and service deployment on them. To this end, there is a movement to federations of loosely coupled autonomous or semi-autonomous systems, which incorporate various local orchestration platforms together with closed-loop control mechanisms aiming to create a self-optimizing system. We start by presenting key computing technologies of the past and the present, along with related networking technologies and continue by describing the important resource allocation challenges that appear in this environment. We conclude, formulating and evaluating a basic resource allocation problem for assigning application's workload in an edge-fog-cloud hierarchical infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann Publishers. ISBN 1558604758 (1999)

    Google Scholar 

  2. Home.cern: The grid: a system of tiers | CERN [Online] (2021). Available at: https://home.cern/science/computing/grid-system-tiers. Accessed 9 Mar 2021

  3. Eu-egee-org.web.cern.ch: EGEE portal: enabling grids for E-sciencE [Online] (2021). Available at: https://eu-egee-org.web.cern.ch/index.html. Accessed 9 Mar 2021

  4. Qureshi, M.B., Dehnavi, M.M., Min-Allah, N., et al.: Survey on grid resource allocation mechanisms. J. Grid Comput. 12, 399–441 (2014)

    Article  Google Scholar 

  5. Laure, E., Fisher, S.M., Frohner, A., Grandi, C., Kunszt, P., Krenek, A., Mulmo, O., Pacini, F., Prelz, F., White, J., Barroso, M., Buncic, P., Hemmer, F., Di Meglio, A., Edlund, A.: Programming the grid with gLite. Comput. Methods Sci. Technol. 12(1), 3345 (2006)

    Article  Google Scholar 

  6. Stevens, T., De Leenheer, M., Develder, C., Dhoedt, B., Christodoulopoulos, K., Kokkinos, P., Varvarigos, E.: Multi-cost job routing and scheduling in grid networks. Futur. Gener. Comput. Syst. 25(8), 912–925 (2009)

    Article  Google Scholar 

  7. The NIST Definition of Cloud Computing [Online]. Available at: https://csrc.nist.gov/publications/detail/sp/800-145/final. Accessed 9 Mar 2021

  8. Amazon Web Services, Inc.: Amazon Web Services (AWS)—Cloud Computing Services [Online] (2021). Available at: https://aws.amazon.com. Accessed 9 Mar 2021

  9. https://www.globenewswire.com/news-release/2020/08/21/2081841/0/en/Cloud-Computing-Industry-to-Grow-from-371-4-Billion-in-2020-to-832-1-Billion-by-2025-at-a-CAGR-of-17-5.html

  10. Zhang, J., Huang, H., Wang, W.: Resource provision algorithms in cloud computing: a survey. J. Netw. Comput. Appl. 64, 23–42 (2016)

    Article  Google Scholar 

  11. Singh, S., Chana, I.: A survey on resource scheduling in cloud computing: issues and challenges. J. Grid Comput. 14(2), 217–264 (2016)

    Article  Google Scholar 

  12. Wang, H., et al.: Distributed systems meet economics: pricing in the cloud. In: USENIX Hot Topics in Cloud Computing (HotCloud) (2010)

    Google Scholar 

  13. Kokkinos, P., Varvarigou, T., Kretsis, A., Soumplis, P., Varvarigos, E.: Sumo: analysis and optimization of amazon ec2 instances. J. Grid Comput. 13(2), 255–274 (2015)

    Article  Google Scholar 

  14. Yousefpour, A., et al.: All one needs to know about fog computing and related edge computing paradigms: a complete survey. J. Syst. Architect. 98, 289–330 (2019)

    Article  Google Scholar 

  15. Cisco Global Cloud Index: Forecast and Methodology, 2016–2021

    Google Scholar 

  16. Kokkinos, P., Kalogeras, D., Levin, A., Varvarigos, E.: Survey: live migration and disaster recovery over long-distance networks. ACM Comput. Surv. 49(2) (2016)

    Google Scholar 

  17. Christodoulopoulos, K., Kontodimas, K., Siokis, A., Yiannopoulos, K., Varvarigos, E.: Efficient bandwidth allocation in the NEPHELE optical/electrical datacenter interconnect. IEEE/OSA J. Opt. Commun. Networking 9(12) (2017)

    Google Scholar 

  18. Poullie, P., Bocek, T., Stiller, B.: A survey of the state-of-the-art in fair multi-resource allocations for data centers. IEEE Trans. Netw. Serv. Manage. 15(1), 169–183 (2017)

    Article  Google Scholar 

  19. Braiki, K., Youssef, H.: Resource management in cloud data centers: a survey. In: IEEE International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 1007–1012 (2019)

    Google Scholar 

  20. Landi, G., Capitani, M., Kretsis, A., Kontodimas, K., Kokkinos, P., Gallico, D., Biancani, M., Christodoulopoulos, K., Varvarigos, E.: Inter-domain optimization and orchestration for optical datacenter networks. J. Opt. Commun. Networking 10(7), B140–B151 (2018)

    Article  Google Scholar 

  21. Ayoubi, S., Limam, N., Salahuddin, M.A., Shahriar, N., Boutaba, R., Estrada-Solano, F., Caicedo, O.M.: Machine learning for cognitive network management. IEEE Commun. Mag. 56(1), 158–165 (2018)

    Article  Google Scholar 

  22. VMware Radius: The next big thing in networking: closed loop automation [Online] (2021). Available at: https://www.vmware.com/radius/closed-loop-automation-network/. Accessed 9 Mar 2021

  23. Cloudify: Closed Loop Orchestration (CLO) with Cloudify [Online] (2021). Available at: https://cloudify.co/blog/closed-loop-orchestration-clo-with-cloudify. Accessed 9 Mar 2021

  24. Pavon-Marino, P., et al.: Techno-economic impact of filterless data plane and agile control plane in the 5G optical metro. J. Lightwave Technol. 38(15), 3801–3814 (2020)

    Google Scholar 

Download references

Acknowledgements

This research has been co‐financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (ARMONIA, project code: Τ1ΕDK-05061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polyzois Soumplis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soumplis, P., Kokkinos, P., Kretsis, A., Nicopolitidis, P., Papadimitriou, G., Varvarigos, E. (2022). Resource Allocation Challenges in the Cloud and Edge Continuum. In: Nicopolitidis, P., Misra, S., Yang, L.T., Zeigler, B., Ning, Z. (eds) Advances in Computing, Informatics, Networking and Cybersecurity. Lecture Notes in Networks and Systems, vol 289. Springer, Cham. https://doi.org/10.1007/978-3-030-87049-2_15

Download citation

Publish with us

Policies and ethics