Skip to main content

Design and Implementation of Bionic Flying Fish with Applications

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2021)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1409))

Included in the following conference series:

  • 837 Accesses

Abstract

Flying fish is a special marine fish that has inherent advantages of swimming in the sea and flying in the air. In this paper, by imitating the structure of the flying fish in nature, a kind of bionic flying fish is designed and implemented, which can obtain information under water, on the water surface, as well as in the air. Besides, this paper discusses the application of leaked oil tracking in multiple bionic flying fishes coordination based on a k-winner-take-all (k-WTA) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zolfagharifard, E.: Flying fish. Engineer 295(7797), 24–25 (2010)

    Google Scholar 

  2. Nelson, J.S., Wilson, M.V.: Fishes of the World. Wiley, London (2016)

    Book  Google Scholar 

  3. Wardle, C.S.: Limit of fish swimming speed. Nature 255, 725–727 (1975). https://doi.org/10.1038/255725a0

    Article  Google Scholar 

  4. John, D.: How and why do flying fish fly. Rev. Fish Biol. Fish. 4, 184–214 (1994). https://doi.org/10.1007/BF00044128

    Article  Google Scholar 

  5. Hyungmin, P., Haecheon, C.: Aerodynamic characteristics of flying fish in gliding flight. J. Exp. Biol. 213(19), 3269–3279 (2010). https://doi.org/10.1242/jeb.046052

    Article  Google Scholar 

  6. Ward, A., Webster, M.: Sociality: The Behaviour of Group-Living Animals. Springer, Switzerland (2016). https://doi.org/10.1007/978-3-319-28585-6

    Book  Google Scholar 

  7. Gao, A., Techet, A.H.: Design considerations for a robotic flying fish. In: Oceans 2011. IEEE (2011). https://doi.org/10.23919/OCEANS.2011.6107039

  8. Nyrkov, A.P., Zhilenkov, A.A., Korotkov, V.V., Sokolov, S.S., Chernyi, S.G.: Development of underwater robotics. J. Phys. Conf. 803, 1–5 (2017). https://doi.org/10.1088/1742-6596/803/1/012108

    Article  Google Scholar 

  9. Xie, Z.T., Jin, L., Du, X.J., Xiao, X.C., Li, H.X., Li, S.: On generalized RMP scheme for redundant robot manipulators aided with dynamic neural networks and nonconvex bound constraints. IEEE Trans. Ind. Inform. 15(9), 5172–5181 (2019). https://doi.org/10.1109/TII.2019.2899909

    Article  Google Scholar 

  10. Costea, R.L., Marinov, C.A.: New accurate and flexible design procedure for a stable KWTA continuous time network. IEEE Trans. Neural Netw. 22(9), 1357–1367 (2011). https://doi.org/10.1109/TNN.2011.2154340

    Article  Google Scholar 

  11. Liao, B.L., Liu, W.J.: Pseudoinverse-type bi-criteria minimization scheme for redundancy resolution of robot manipulators. Robotica 33(10), 2100–2113 (2015). https://doi.org/10.1017/S0263574714001349

    Article  Google Scholar 

  12. Yang, C.G., Cheng, C.Z., He, W., Cui, R.X., Li, Z.J.: Robot learning system based on adaptive neural control and dynamic movement primitives. IEEE Trans. Neural Netw. Learn. Syst. 30(3), 777–787 (2019). https://doi.org/10.1109/TNNLS.2018.2852711

    Article  MathSciNet  Google Scholar 

  13. Kutsukake, N.: Complexity, dynamics and diversity of sociality in group-living mammals. Ecol. Res. 24(3), 521–531 (2009). https://doi.org/10.1007/s11284-008-0563-4

    Article  Google Scholar 

  14. Jin, L., et al.: Perturbed manipulability optimization in a distributed network of redundant robots. IEEE Trans. Ind. Electron. 68(8), 7209–7220 (2021). https://doi.org/10.1109/TIE.2020.3007099

    Article  Google Scholar 

  15. Deng, J., Jin, N., Zhou, Y., Lu, K., Shao, X.: Preliminary study on aerial-aquatic unmanned vehicle mimicking flying fish. Chin. J. Hydrodyn. 35(1), 55–60 (2020). https://doi.org/10.16076/j.cnki.cjhd.2020.01.009

    Article  Google Scholar 

  16. Binas, J., Rutishauser, U., Indiveri, G., Pfeiffer, M.: Learning and stabilization of winner-take-all dynamics through interacting excitatory and inhibitory plasticity. Front. Comput. Neurosci. 8(8), 68 (2014). https://doi.org/10.3389/fncom.2014.00068

    Article  Google Scholar 

  17. Xie, Z.T., Jin, L., Luo, X., Sun, Z.B., Liu, M.: RNN for repetitive motion generation of redundant robot manipulators: an orthogonal projection-based scheme. IEEE Trans. Neural Netw. Learn. Syst. 1–14 (2020). https://doi.org/10.1109/TNNLS.2020.3028304

  18. Wei, L., Jin, L., Yang, C.G., Chen, K., Li, W.B.: New noise-tolerant neural algorithms for future dynamic nonlinear optimization with estimation on Hessian matrix inversion. IEEE Trans. Syst. Man Cybern. Syst. 51(4), 2611–2623 (2019). https://doi.org/10.1109/TSMC.2019.2916892

    Article  Google Scholar 

  19. Jin, L., Yan, J.K., Du, X.J., Xiao, X.C., Fu, D.Y.: RNN for solving time-variant generalized Sylvester equation with applications to robots and acoustic source localization. IEEE Trans. Ind. Inform. 10(16), 6359–6369 (2020). https://doi.org/10.1109/TII.2020.2964817

    Article  Google Scholar 

  20. Qi, Y.M., Jin, L., Li, H.X., Li, Y.M., Liu, M.: Discrete computational neural dynamics models for solving time-dependent Sylvester equations with applications to robotics and MIMO systems. IEEE Trans. Ind. Inform. 31(9), 3555–3569 (2020). https://doi.org/10.1109/TII.2020.2966544

    Article  Google Scholar 

  21. Zhang, Y.Y., Li, S., Xu, B., Yang, Y.: Analysis and design of a distributed k-winners-take-all model. Automatica 115, 1–8 (2020). https://doi.org/10.1016/j.automatica.2020.108868

    Article  MathSciNet  MATH  Google Scholar 

  22. Xie, Z.T., Jin, L., Luo, X., Li, S., Xiao, X.C.: A data-driven cyclic-motion generation scheme for kinematic control of redundant manipulators. IEEE Trans. Control Syst. Technol. 29(1), 53–63 (2021). https://doi.org/10.1109/TCST.2019.2963017

    Article  Google Scholar 

  23. Jin, L., Li, S., La, H.M., Zhang, X., Hu, B.: Dynamic task allocation in multi-robot coordination for moving target tracking: a distributed approach. Automatica 100, 75–81 (2019). https://doi.org/10.1016/j.automatica.2018.11.001

    Article  MathSciNet  MATH  Google Scholar 

  24. Luo, X., Zhou, M.C., Li, S., Wu, D., Liu, Z.G., Shang, M.S.: Algorithms of unconstrained non-negative latent factor analysis for recommender systems. IEEE Trans. Big Data 7(1), 227–240 (2021). https://doi.org/10.1109/TBDATA.2019.2916868

    Article  Google Scholar 

  25. Luo, X., Wang, D.X., Zhou, M.C., Yuan, H.Q.: Latent factor-based recommenders relying on extended stochastic gradient descent algorithms. IEEE Trans. Syst. Man Cybern. Syst. 51(2), 916–926 (2021). https://doi.org/10.1109/TSMC.2018.2884191

    Article  Google Scholar 

  26. Liu, M., Li, H.W., Li, Y., Jin, L., Huang, Z.G.: From WASD to BLS with application to pattern classification. Appl. Soft Comput. 108, 107455 (2021). https://doi.org/10.1016/j.asoc.2021.107455

    Article  Google Scholar 

  27. Liu, M., Peng, B., Shang, M.S.: Lower limb movement intention recognition for rehabilitation robot aided with projected recurrent neural network. Complex Intell. Syst. (2021). https://doi.org/10.1007/s40747-021-00341-w

  28. Jin, L., Xie, Z.T., Liu, M., Chen, K., Li, C.X., Yang, C.G.: Novel joint-drift-free scheme at acceleration level for robotic redundancy resolution with tracking error theoretically eliminated. IEEE-ASME Trans. Mechatron. 26(1), 90–101 (2020). https://doi.org/10.1109/TMECH.2020.3001624

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Natural Science Foundation of Gansu Province, China, under Grant 20JR10RA639, in part by the Gansu Province Key Laboratory of Medical Imaging Fund Project under Grant 18JR2RA028, in part by the Research and Development Foundation of Nanchong, China, under Grant 20YFZJ0018, in part by the Fundamental Research Funds for the Central Universities under Grant lzujbky-2019-89, lzujbky-2021-it35 and lzujbky-2021-it36, and in part by the Lanzhou Talent Innovation and Entrepreneurship Project of Lanzhou Science and Technology Bureau under Grant 2020-RC-34.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, H., Liu, M., Su, D. (2022). Design and Implementation of Bionic Flying Fish with Applications. In: Jansen, T., Jensen, R., Mac Parthaláin, N., Lin, CM. (eds) Advances in Computational Intelligence Systems. UKCI 2021. Advances in Intelligent Systems and Computing, vol 1409. Springer, Cham. https://doi.org/10.1007/978-3-030-87094-2_20

Download citation

Publish with us

Policies and ethics