Skip to main content

Score to Learn: A Comparative Analysis of Scoring Functions for Active Learning in Robotics

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12899))

Included in the following conference series:

  • 907 Accesses

Abstract

Accurately detecting objects in unconstrained settings is crucial for robotic agents, such as humanoids, that function in ever-changing environments. Current deep learning based methods achieve remarkable performance on this task on general purpose benchmarks and they are therefore appealing for robotics. However, their high accuracy comes at the price of computationally expensive off-line training and extensive human labeling. These aspects make their adoption in robotics challenging, since they prevent rapid model adaptation and re-training to novel tasks and conditions. Nonetheless, robots, and especially humanoids, being embodied in the surrounding environment, have access to streams of data from their sensors that, even though without supervision, might contain information of the objects of interest. The Weakly-supervised Learning (WSL) framework offers a set of tools to tackle these problems in general-purpose Computer Vision. In this work, we aim at investigating their adoption in the robotics domain which is still at a preliminary stage. We build on previous work, studying the impact of different, so called, scoring functions, which are at the core of WSL methods, on Pascal VOC, a general purpose dataset, and a prototypical robotic setting, i.e. the iCubWorld-Transformations dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/RiccardoGrigoletto/SSM-Pytorch.

  2. 2.

    The models have been trained on a single GPU Nvidia TESLA K40 and Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz.

References

  1. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. In: The Handbook of Brain Theory and Neural Networks, vol. 3361.10, p. 1995 (1995)

    Google Scholar 

  2. He, K., et al.: Mask R-CNN. In: The IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  3. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection (2020). arXiv:1911.09070 [cs.CV]

  4. Bochkovskiy, A., Wang, C.-Y., Mark Liao, H.-Y.: YOLO4j: optimal speed and accuracy of object detection (2020). arXiv:2004.10934 [cs.CV]

  5. Everingham, M., et al.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010). ISSN 0920-5691, 1573-1405. https://doi.org/10.1007/s11263-009-0275-4. http://link.springer.eom/10.1007/s11263-009-0275-4

  6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., et al. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. pp. 1097–1105. Curran Associates Inc. (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

  7. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. arXiv:1405.0312 [cs], 20 February 2015. arXiv:1405.0312. URL: http://arxiv.org/abs/1405.0312. Accessed 21 May 2020

  8. Maiettini, E., et al.: Interactive data collection for deep learning object detectors on humanoid robots. In: 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pp. 862–868, November 2017. https://doi.org/10.1109/HUMAN0IDS.2017.8246973

  9. Metta, G., et al.: The iCub humanoid robot: an open-systems platform for research in cognitive development. Neural Netw. Official J. Int. Neural Netw. Soc. 23(8–9), 1125–34 (2010). https://doi.org/10.1016/j.neunet.2010.08.010. Jan

    Article  Google Scholar 

  10. Maiettini, E., et al.: A weakly supervised strategy for learning object detection on a humanoid robot. In: 2019 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), p. 8 (2019)

    Google Scholar 

  11. Zhou, Z.-H.: A brief introduction to weakly supervised learning. Nat. Sci. Rev. 5(1), 44–53 (2018). https://academic.oup.com/nsr/article/5/1/44/4093912. https://doi.org/10.1093/nsr/nwxl06. ISSN 2095–5138, 2053–714X. Accessed 28 May 2020

  12. Zhang, D., et al.: Weakly supervised object localization and detection: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2021). https://doi.org/10.1109/TPAMI.2021.3074313

  13. Settles, B.: Active learning literature survey. Technical report, University of Wisconsin-Madison Department of Computer Sciences (2009)

    Google Scholar 

  14. Settles, B.: Active learning. In: Synthesis Lectures on Artificial Intelligence and Machine Learning (2012)

    Google Scholar 

  15. Aghdam, H.H., et al.: Active learning for deep detection neural networks. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South), pp. 3671–3679, IEEE, October 2019, ISBN 978-1-72814-803-8. https://ieeexplore.ieee.org/document/9009535/. https://doi.org/10.1109/ICCV.2019.00377. Accessed 16 June 2020

  16. Haussmann, E., et al.: Scalable active learning for object detection. In: IEEE Intelligent Vehicles Symposium (IV), IEEE 2020, pp. 1430–1435 (2020)

    Google Scholar 

  17. Li, Y., Huang, D., Qin, D., Wang, L., Gong, B.: Improving object detection with selective self-supervised self-training. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 589–607. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_35

    Chapter  Google Scholar 

  18. Dwibedi, D., Misra, I., Hebert, M.: Cut, paste and learn: surprisingly easy synthesis for instance detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1301–1310 (2017)

    Google Scholar 

  19. Maiettini, E., et al.: On-line object detection: a robotics challenge. Auton. Robot. 1573–7527 (2019). ISSN 0929-5593. http://link.springer.com/10.1007/S10514-019-09894-9. https://doi.org/10.1007/S10514-019-09894-9. Accessed 10 Feb 2020

  20. Wang, K., et al.: Towards human-machine cooperation: self-supervised sample mining for object detection. arXiv:1803.09867 [cs], May 2018. http://eirxiv.org/abs/1803.09867. Accessed 30 Jan 2020

  21. Maiettini, E., et al.: Data-efficient weakly-supervised learning for online object detection under domain shift in robotics (2020). arXiv:2012.14345

  22. Pasquale, G., et al.: Are we done with object recognition? The iCub robot’s perspective. Robot. Auton. Syst. 112, 260–281 (2019). ISSN: 09218890. arXiv:1709.09882. https://doi.org/10.1016/j.robot.2018.11.001. Accessed 13 Jan 2020

  23. Redmon, J., et al.: You only look once: unified, real-time object detection. arXiv:1506.02640 [cs], 9 May 2016. arXiv:1506.02640. Accessed 26 May 2020

  24. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. CoRR abs/1804.02767 (2018). arXiv:1804.02767

  25. Liu, W., et al.: SSD: single shot multibox detector, pp. 21–37. arXiv:1512.02325 [cs] 9905 (2016). arXiv:1512.02325. Accessed 26 May 2020. https://doi.org/10.1007/978-3-319-46448-0_2

  26. Zhai, S., et al.: DF-SSD: an improved SSD object detection algorithm based on DenseNet and feature fusion. IEEE Access 8, 24344–24357 (2020)

    Article  Google Scholar 

  27. Lin, T.-Y., et al.: Focal loss for dense object detection, 7 February 2018. arXiv:1708.02002. Accessed 26 May 2020

  28. Zhang, S., et al.: Single-shot refinement neural network for object detection. arXiv:1711.06897 [cs], 3 January 2018. arXiv:1711.06897. Accessed 26 May 2020

  29. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: arXiv:1808.01244 [cs], 18 March 2019. arXiv:1808.01244. http://cirxiv.org/abs/1808.01244. Accessed 26 May 2020

  30. Girshick, R.B., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR abs/1311.2524 (2013). arXiv:1311.2524

  31. Girshick, R.: Fast R-CNN. arXiv:1504.08083 [cs], 27 September 2015. arXiv:1504.08083. Accessed 20 May 2020

  32. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. arXiv:1506.01497 [cs], January 2016. arXiv:1506.01497. Accessed 29 Jan 2020

  33. Dai, J., et al.: R-FCN: object detection via region-based fully convolutional networks. arXiv:1605.06409 [cs], 21 June 2016. arXiv:1605.06409. Accessed 26 May 2020

  34. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. arXiv:1611.10012 [cs], 24 April 2017. arXiv:1611.10012. Accessed 28 May 2020

  35. Maiettini, E., et al.: Speeding-up object detection training for robotics with FALKON. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2018, pp. 5770–5776. https://doi.org/10.1109/IR0S.2018.8593990

  36. Ceola, F., et al.: Fast region proposal learning for object detection for robotics (2020). arXiv:2011.12790 [cs.CV]

  37. Ceola, F., et al.: Fast object segmentation learning with kernel-based methods for robotics (2020). arXiv:2011.12805 [cs.CV]

  38. Kirsch, A., van Amersfoort, J., Gal, Y.: BatchBALD: efficient and diverse batch acquisition for deep Bayesian active learning. In: NeurlPS (2019)

    Google Scholar 

  39. Ash, J.T., et al.: Deep batch active learning by diverse, uncertain gradient lower bounds, January 2020. https://openreview.net/forum?id=0HjEAtQNNWD. Accessed 26 Oct 2020

  40. Kao, C.-C., Lee, T.-Y., Sen, P., Liu, M.-Y.: Localization-aware active learning for object detection. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11366, pp. 506–522. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20876-9_32

    Chapter  Google Scholar 

  41. Desai, S.V., et al.: An adaptive supervision framework for active learning in object detection. arXiv preprint arXiv:1908.02454 (2019)

  42. He, K., et al.: Deep residual learning for image recognition. arXiv:1512.03385 [cs], December 2015. Accessed 09 July 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Grigoletto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grigoletto, R., Maiettini, E., Natale, L. (2021). Score to Learn: A Comparative Analysis of Scoring Functions for Active Learning in Robotics. In: Vincze, M., Patten, T., Christensen, H.I., Nalpantidis, L., Liu, M. (eds) Computer Vision Systems. ICVS 2021. Lecture Notes in Computer Science(), vol 12899. Springer, Cham. https://doi.org/10.1007/978-3-030-87156-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87156-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87155-0

  • Online ISBN: 978-3-030-87156-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics