Skip to main content

Unsupervised Network Learning for Cell Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12901))

Abstract

Cell segmentation is a fundamental and critical step in numerous biomedical image studies. For the fully-supervised cell segmentation algorithms, although highly effective, a large quantity of high-quality training data is required, which is usually labor-intensive to produce. In this work, we formulate the unsupervised cell segmentation as a slightly under-constrained problem, and present the Unsupervised Segmentation network learning by Adversarial Reconstruction (USAR), a novel model able to train cell segmentation networks without any annotation. The key idea is to leverage adversarial learning paradigm to train the segmentation network by adversarially reconstructing the input images based on their segmentation results generated by the segmentation network. The USAR model demonstrates its promising application on training segmentation networks in an unsupervised manner, on two benchmark datasets. The implementation of this project can be found at https://github.com/LiangHann/USAR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://celltrackingchallenge.net/2d-datasets/.

References

  1. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  2. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  3. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  4. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  5. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In IEEE Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016)

    Google Scholar 

  6. Gibson, E., et al.: Automatic multi-organ segmentation on abdominal CT with dense v-networks. IEEE Trans. Med. Imaging 37, 1822–1834 (2018)

    Article  Google Scholar 

  7. Zhao, T., Yin, Z.: Pyramid-based fully convolutional networks for cell segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 677–685. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_77

    Chapter  Google Scholar 

  8. Zhong, Z., Zheng, L., Kang, G., et al.: Random erasing data augmentation. In: AAAI Conference on Artificial Intelligence, pp. 1–8 (2020)

    Google Scholar 

  9. Cubuk, E., Zoph, B., Mane, D., et al.: AutoAugment: learning augmentation strategies from data. In: IEEE International Conference on Computer Vision, pp. 113–123 (2019)

    Google Scholar 

  10. Zhao, A., Balakrishnan, G., Durand, F., et al.: Data augmentation using learned transformations for one-shot medical image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8543–8553 (2019)

    Google Scholar 

  11. Van Opbroek, A., Achterberg, H., Vernooij, M., et al.: Transfer learning for image segmentation by combining image weighting and kernel learning. IEEE Trans. Med. Imaging 38(1), 213–224 (2018)

    Article  Google Scholar 

  12. Sun, R., Zhu, X., Wu, C., et al.: Not all areas are equal: transfer learning for semantic segmentation via hierarchical region selection. In: IEEE International Conference on Computer Vision, pp. 4360–4369 (2019)

    Google Scholar 

  13. Majurski, M., Manescu, P., Padi, S., et al.: Cell image segmentation using generative adversarial networks, transfer learning, and augmentations. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  14. Wang, Y., et al.: Double-uncertainty weighted method for semi-supervised learning. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 542–551. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_53

    Chapter  Google Scholar 

  15. Fang, K., Li, W.-J.: DMNet: difference minimization network for semi-supervised segmentation in medical images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 532–541. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_52

    Chapter  Google Scholar 

  16. Cao, X., Chen, H., Li, Y., et al.: Uncertainty aware temporal-ensembling model for semi-supervised ABUS mass segmentation. IEEE Trans. Med. Imaging 40(1), 431–443 (2020)

    Article  Google Scholar 

  17. Zheng, H., Zhuang, Z., Qin, Y., Gu, Y., Yang, J., Yang, G.-Z.: Weakly supervised deep learning for breast cancer segmentation with coarse annotations. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 450–459. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_44

    Chapter  Google Scholar 

  18. Roth, H.R., Yang, D., Xu, Z., et al.: Going to extremes: weakly supervised medical image segmentation. arXiv preprint arXiv:2009.11988 (2020)

  19. Kervadec, H., Dolz, J., Tang, M., et al.: Constrained-CNN losses for weakly supervised segmentation. Med. Image Anal. 54, 88–99 (2019)

    Article  Google Scholar 

  20. Cai, J., et al.: Accurate weakly-supervised deep lesion segmentation using large-scale clinical annotations: slice-propagated 3D mask generation from 2D RECIST. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 396–404. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_46

    Chapter  Google Scholar 

  21. Kanezaki, A.: Unsupervised image segmentation by backpropagation. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1543–1547 (2018)

    Google Scholar 

  22. Kim, W., Kanezaki, A., Tanaka, M.: Unsupervised learning of image segmentation based on differentiable feature clustering. IEEE Trans. Image Process. 29, 8055–8068 (2020)

    Article  Google Scholar 

  23. Sivanesan, U., et al.: Unsupervised medical image segmentation with adversarial networks: from edge diagrams to segmentation maps. arXiv:1911.05140 (2019)

  24. Hou, L., et al.: Robust histopathology image analysis: to label or to synthesize? In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8533–8542 (2019)

    Google Scholar 

  25. Chen, M., Artières, T., Denoyer, L.: Unsupervised object segmentation by redrawing. arXiv preprint arXiv:1905.13539 (2019)

  26. Song, Y., Zhou, T., Teoh, J.Y.-C., Zhang, J., Qin, J.: Unsupervised learning for CT image segmentation via adversarial redrawing. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 309–320. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_31

    Chapter  Google Scholar 

  27. Bortsova, G., Dubost, F., Hogeweg, L., Katramados, I., de Bruijne, M.: Semi-supervised medical image segmentation via learning consistency under transformations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 810–818. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_90

    Chapter  Google Scholar 

  28. Xie, Y., Zhang, J., Liao, Z., Verjans, J., Shen, C., Xia, Y.: Pairwise relation learning for semi-supervised gland segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 417–427. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_40

    Chapter  Google Scholar 

  29. Li, S., Zhang, C., He, X.: Shape-aware semi-supervised 3D semantic segmentation for medical images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 552–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_54

    Chapter  Google Scholar 

  30. Li, H., Yin, Z.: Attention, suggestion and annotation: a deep active learning framework for biomedical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 3–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_1

    Chapter  Google Scholar 

  31. Ravanbakhsh, M., Tschernezki, V., Last, F., et al.: Human-machine collaboration for medical image segmentation. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1040–1044 (2020)

    Google Scholar 

  32. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This project was supported by Stony Brook University - Brookhaven National Laboratory (SBU-BNL) seed grant on annotation-efficient deep learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaozheng Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, L., Yin, Z. (2021). Unsupervised Network Learning for Cell Segmentation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics