Skip to main content

Pancreas CT Segmentation by Predictive Phenotyping

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Pancreas CT segmentation offers promise at understanding the structural manifestation of metabolic conditions. To date, the medical primary record of conditions that impact the pancreas is in the electronic health record (EHR) in terms of diagnostic phenotype data (e.g., ICD-10 codes). We posit that similar structural phenotypes could be revealed by studying subjects with similar medical outcomes. Segmentation is mainly driven by imaging data, but this direct approach may not consider differing canonical appearances with different underlying conditions (e.g., pancreatic atrophy versus pancreatic cysts). To this end, we exploit clinical features from EHR data to complement image features for enhancing the pancreas segmentation, especially in high-risk outcomes. Specifically, we propose, to the best of our knowledge, the first phenotype embedding model for pancreas segmentation by predicting representatives that share similar comorbidities. Such an embedding strategy can adaptively refine the segmentation outcome based on the discriminative contexts distilled from clinical features. Experiments with 2000 patients’ EHR data and 300 CT images with the healthy pancreas, type II diabetes, and pancreatitis subjects show that segmentation by predictive phenotyping significantly improves performance over state-of-the-arts (Dice score 0.775 to 0.791, \(p < 0.05\), Wilcoxon signed-rank test). The proposed method additionally achieves superior performance on two public testing datasets, BTCV MICCAI Challenge 2015 and TCIA pancreas CT. Our approach provides a promising direction of advancing segmentation with phenotype features while without requiring EHR data as input during testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baytas, I.M., Xiao, C., Zhang, X., Wang, F., Jain, A.K., Zhou, J.: Patient subtyping via time-aware lstm networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 65–74 (2017)

    Google Scholar 

  2. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  3. Evans, J.A.: Electronic medical records system (Jul 13 1999), uS Patent 5,924,074

    Google Scholar 

  4. Giannoula, A., Gutierrez-Sacristán, A., Bravo, Á., Sanz, F., Furlong, L.I.: Identifying temporal patterns in patient disease trajectories using dynamic time warping: a population-based study. Sci. Rep. 8(1), 1–14 (2018)

    Article  Google Scholar 

  5. Goda, K., Sasaki, E., Nagata, K., Fukai, M., Ohsawa, N., Hahafusa, T.: Pancreatic volume in type 1 und type 2 diabetes mellitus. Acta Diabetol. 38(3), 145–149 (2001)

    Article  Google Scholar 

  6. Hales, C.N., Barker, D.J.: Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35(7), 595–601 (1992)

    Article  Google Scholar 

  7. Landman, B., Xu, Z., Igelsias, J., Styner, M., Langerak, T., Klein, A.: Miccai multi-atlas labeling beyond the cranial vault-workshop and challenge. In: Proceedings of MICCAI Multi-Atlas Labeling Beyond Cranial Vault—Workshop Challenge (2015)

    Google Scholar 

  8. Lee, C., Van Der Schaar, M.: Temporal phenotyping using deep predictive clustering of disease progression. In: International Conference on Machine Learning, pp. 5767–5777. PMLR (2020)

    Google Scholar 

  9. Luong, D.T.A., Chandola, V.: A k-means approach to clustering disease progressions. In: 2017 IEEE International Conference on Healthcare Informatics (ICHI), pp. 268–274. IEEE (2017)

    Google Scholar 

  10. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  11. Mani, S., Chen, Y., Elasy, T., Clayton, W., Denny, J.: Type 2 diabetes risk forecasting from emr data using machine learning. In: AMIA Annual Symposium Proceedings, vol. 2012, p. 606. American Medical Informatics Association (2012)

    Google Scholar 

  12. Misra, I., Maaten, L.v.d.: Self-supervised learning of pretext-invariant representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6707–6717 (2020)

    Google Scholar 

  13. Quan, H., et al.: Coding algorithms for defining comorbidities in icd-9-cm and icd-10 administrative data. Medical care, pp. 1130–1139 (2005)

    Google Scholar 

  14. Roth, H., Farag, A., Turkbey, E., Lu, L., Liu, J., Summers, R.: Data from pancreas-ct. The cancer imaging archive (2016)

    Google Scholar 

  15. Roth, H.R., Farag, A., Lu, L., Turkbey, E.B., Summers, R.M.: Deep convolutional networks for pancreas segmentation in CT imaging. In: Medical Imaging 2015: Image Processing, vol. 9413, p. 94131G. International Society for Optics and Photonics (2015)

    Google Scholar 

  16. Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_68

    Chapter  Google Scholar 

  17. Tang, Y., et al.: Body part regression with self-supervision. IEEE Trans. Med. Imaging 40, 1499–1507 (2021)

    Google Scholar 

  18. Tang, Y., et al.: High-resolution 3d abdominal segmentation with random patch network fusion. Med. Image Anal. 69, 101894 (2021)

    Google Scholar 

  19. Tang, Y., et al.: Prediction of Type II diabetes onset with computed tomography and electronic medical records. In: Syeda-Mahmood, T., et al. (eds.) CLIP/ML-CDS -2020. LNCS, vol. 12445, pp. 13–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60946-7_2

    Chapter  Google Scholar 

  20. Virostko, J., Hilmes, M., Eitel, K., Moore, D.J., Powers, A.C.: Use of the electronic medical record to assess pancreas size in type 1 diabetes. PLoS ONE 11(7), e0158825 (2016)

    Google Scholar 

  21. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning, pp. 478–487. PMLR (2016)

    Google Scholar 

  22. Zheng, T., et al.: A machine learning-based framework to identify type 2 diabetes through electronic health records. Int. J. Med. Informatics 97, 120–127 (2017)

    Article  Google Scholar 

  23. Zhou, Y., Xie, L., Fishman, E.K., Yuille, A.L.: Deep supervision for pancreatic cyst segmentation in abdominal CT scans. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 222–230. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_26

    Chapter  Google Scholar 

  24. Zhou, Y., Xie, L., Shen, W., Wang, Y., Fishman, E.K., Yuille, A.L.: A fixed-point model for pancreas segmentation in abdominal CT scans. In: MICCAI, pp. 693–701 (2017)

    Google Scholar 

  25. Zhu, Z., Xia, Y., Shen, W., Fishman, E., Yuille, A.: A 3d coarse-to-fine framework for volumetric medical image segmentation. In: 2018 International Conference on 3D Vision (3DV), pp. 682–690. IEEE (2018)

    Google Scholar 

Download references

Acknowledgements

This research is supported by NIH Common Fund and National Institute of Diabetes, Digestive and Kidney Diseases U54DK120058, NSF CAREER 1452485, NIH grants, 2R01EB006136, 1R01EB017230 (Landman), and R01NS09529. The identified datasets used for the analysis described were obtained from the Research Derivative (RD), database of clinical and related data. The imaging dataset(s) used for the analysis described were obtained from ImageVU, a research repository of medical imaging data and image-related metadata. ImageVU and RD are supported by the VICTR CTSA award (ULTR000445 from NCATS/NIH) and Vanderbilt University Medical Center institutional funding. ImageVU pilot work was also funded by PCORI (contract CDRN-1306-04869).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucheng Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Y. et al. (2021). Pancreas CT Segmentation by Predictive Phenotyping. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics