Skip to main content

Selective Learning from External Data for CT Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12901))

Abstract

Learning from external data is an effective and efficient way of training deep networks, which can substantially alleviate the burden on collecting training data and annotations. It is of great significance in improving the performance of CT image segmentation tasks, where collecting a large amount of voxel-wise annotations is expensive or even impractical. In this paper, we propose a generic selective learning method to maximize the performance gains of harnessing external data in CT image segmentation. The key idea is to learn a weight for each external data such that ‘good’ data can have large weights and thus contribute more to the training loss, thereby implicitly encouraging the network to mine more valuable knowledge from informative external data while suppressing to memorize irrelevant patterns from ‘useless’ or even ‘harmful’ data. Particularly, we formulate our idea as a constrained non-linear programming problem, solved by an iterative solution that alternatively conducts weights estimating and network updating. Extensive experiments on abdominal multi-organ CT segmentation datasets show the efficacy and performance gains of our method against existing methods. The code is publicly available (Released at https://github.com/YouyiSong/Codes-for-Selective-Learning).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available on https://zenodo.org/record/1169361#.XSFOm-gzYuU.

References

  1. Litjens, G., Kooi, T., Bejnordi, B., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  2. Shen, D., Wu, G., Suk, H.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  3. Kakeya, H., Okada, T., Oshiro, Y.: 3D U-JAPA-Net: mixture of convolutional networks for abdominal multi-organ CT segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 426–433 (2018)

    Google Scholar 

  4. Song, Y., Yu, Z., Zhou, T., et al.: Learning 3D features with 2D CNNs via surface projection for CT volume segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 176–186 (2020)

    Google Scholar 

  5. Huang, R., Zheng, Y., Hu, Z., et al.: Multi-organ segmentation via co-training weight-averaged models from few-organ datasets. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 146–155 (2020)

    Google Scholar 

  6. Isensee, F., Jaeger, P., Kohl, S., et al.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 1–9 (2020)

    Google Scholar 

  7. Mansour, Y., Mohri, M., Suresh, A., et al.: A theory of multiple-source adaptation with limited target labeled data. arXiv preprint arXiv:2007.09762 (2020)

  8. Cortes, C., Mohri, M., Suresh, A., et al.: Multiple-source adaptation with domain classifiers. arXiv preprint arXiv:2008.11036 (2020)

  9. Konstantinov, N., Frantar, E., Alistarh, D., et al.: On the sample complexity of adversarial multi-source PAC learning. In: International Conference on Machine Learning, pp. 5416–5425 (2020)

    Google Scholar 

  10. Charikar, M., Steinhardt, J., Valiant, G.: Learning from untrusted data. In: Proceedings of 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 47–60 (2017)

    Google Scholar 

  11. Qiao, M., Valiant, G.: Learning discrete distributions from untrusted batches. arXiv preprint arXiv:1711.08113 (2017)

  12. Awasthi, P., Blum, A., Haghtalab, N., et al.: Efficient PAC learning from the crowd. In: International Conference on Learning Theory, pp. 127–150 (2017)

    Google Scholar 

  13. Hendrycks, D., Mazeika, M., Wilson, D., et al.: Using trusted data to train deep networks on labels corrupted by severe noise. arXiv:1802.05300 (2018)

  14. Han, B., Yao, Q., Yu, X., et al.: Co-teaching: robust training of deep neural networks with extremely noisy labels. In: Advances in Neural Information Processing Systems, pp. 8536–8546 (2018)

    Google Scholar 

  15. Ghadikolaei, H., Ghauch, H., Fischione, C., et al.: Learning and data selection in big datasets. In: International Conference on Machine Learning, pp. 2191–2200 (2019)

    Google Scholar 

  16. Jain, A., Orlitsky, A.: A general method for robust learning from batches. arXiv preprint arXiv:2002.11099 (2020)

  17. Zhang, C., Yao, Y., Liu, H., et al.: Web-supervised network with softly update-drop training for fine-grained visual classification. In: AAAI Conference on Artificial Intelligence, pp. 12781–12788 (2020)

    Google Scholar 

  18. Zhang, C., Yao, Y., Shu, X., et al.: Data-driven meta-set based fine-grained visual classification. arXiv preprint arXiv:2008.02438 (2020)

  19. Bugallo, M., Elvira, V., Martino, L., et al.: Adaptive importance sampling: the past, the present, and the future. IEEE Signal Process. Mag. 34(4), 60–79 (2017)

    Article  Google Scholar 

  20. Katharopoulos, A., Fleuret, F.: Not all samples are created equal: deep learning with importance sampling. In: International Conference on Machine Learning, pp. 2525–2534 (2018)

    Google Scholar 

  21. Sun, Y., Kamel, M., Wong, A., et al.: Cost-sensitive boosting for classification of imbalanced data. Pattern Recogn. 40(12), 3358–3378 (2007)

    Article  Google Scholar 

  22. Liu, Q., Ihler, A., Fisher, J.: Boosting crowdsourcing with expert labels: local vs. global effect. In: International Conference on Information Fusion, pp. 9–14 (2015)

    Google Scholar 

  23. Malisiewicz, T., Gupta, A., Efros, A.: Ensemble of exemplar-svms for object detection and beyond. In: International Conference on Computer Vision, pp. 89–96 (2011)

    Google Scholar 

  24. Dumitrache, A., Aroyo, L., Welty, C.: Crowdsourcing ground truth for medical relation extractio. arXiv preprint arXiv:1701.02185 (2017)

  25. Yan, K., Cai, J., Zheng, Y., et al.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in CT. IEEE Trans. Med. Imaging (2020)

    Google Scholar 

  26. Luo, L., Yu, L., Chen, H., et al.: Deep mining external imperfect data for chest X-ray disease screening. IEEE Trans. Med. Imaging 39(11), 3583–3594 (2020)

    Article  Google Scholar 

  27. Ren, M., Zeng, W., Yang, B., et al.: Learning to reweight examples for robust deep learning. In: International Conference on Machine Learning, pp. 4334–4343 (2018)

    Google Scholar 

  28. Konstantinov, N., Lampert, C.: Robust learning from untrusted sources. In: International Conference on Machine Learning, pp. 3488–3498 (2019)

    Google Scholar 

  29. Lin, T., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection. In: IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  30. Song, H., Kim, M., Lee, J.: Selfie: refurbishing unclean samples for robust deep learning. In: International Conference on Machine Learning, pp. 5907–5915 (2019)

    Google Scholar 

  31. Nandwani, Y., Pathak, A., Singla, P.: A primal dual formulation for deep learning with constraints. In: Advances in Neural Information Processing Systems, pp. 1–9 (2019)

    Google Scholar 

  32. Gibson, E., Giganti, F., Hu, Y., et al.: Automatic multi-organ segmentation on abdominal CT with dense v-networks. IEEE Trans. Med. Imaging 37(8), 1822–1834 (2018)

    Article  Google Scholar 

  33. Landman, B., Xu, Z., Eugenio, I., et al.: MICCAI multi-atlas labeling beyond the cranial vault-workshop and challenge (2015)

    Google Scholar 

  34. Roth, H., Farag, A., Turkbey, E., et al.: Data from pancreas-CT. Cancer Imaging Arch. (2015)

    Google Scholar 

  35. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  36. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  37. Xu, B., Wang, N., Chen, T., et al.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

  38. Srivastava, N., Hinton, G., Krizhevsky, A., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Acknowledgement

The work described in this paper is supported by two grants from the Hong Kong Research Grants Council under General Research Fund scheme (Project No. PolyU 152035/17E and 15205919), and a grant from HKU Startup Fund and HKU Seed Fund for Basic Research (Project No. 202009185079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youyi Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, Y., Yu, L., Lei, B., Choi, KS., Qin, J. (2021). Selective Learning from External Data for CT Image Segmentation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics