Skip to main content

Towards Efficient Human-Machine Collaboration: Real-Time Correction Effort Prediction for Ultrasound Data Acquisition

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

One of the foremost challenges of using Deep Neural Network-based methods for a fully automated segmentation in clinics is the lack of performance guarantee. In the foreseeable future, a feasible and promising way is that radiologists sign off the machine’s segmentation results and make corrections if needed. As a result, the human effort for image segmentation that we try to minimize will be dominated by segmentation correction. While such effort can be reduced by the advance of segmentation models, for ultrasound a novel direction can be explored: optimizing the data acquisition. We observe a substantial variation of segmentation quality among repetitive scans of the same subject even if they all have high visual quality. Based on this observation, we propose a framework to help sonographers obtain ultrasound videos that not only meet the existing quality standard but also result in better segmentation results. The promising result demonstrates the feasibility of optimizing the data acquisition for efficient human-machine collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdi, A.H., et al.: Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view. IEEE Trans. Med. Imaging 36(6), 1221–1230 (2017)

    Article  MathSciNet  Google Scholar 

  2. Akkus, Z., et al.: A survey of deep-learning applications in ultrasound: artificial intelligence-powered ultrasound for improving clinical workflow. J. Am. Coll. Radiol. 16(9), 1318–1328 (2019)

    Article  Google Scholar 

  3. Bridge, P., Fielding, A., Rowntree, P., Pullar, A.: Intraobserver variability: should we worry? J. Med. imaging Radiat. Sci. 47(3), 217–220 (2016)

    Article  Google Scholar 

  4. DeVries, T., Taylor, G.W.: Leveraging uncertainty estimates for predicting segmentation quality. arXiv preprint arXiv:1807.00502 (2018)

  5. Zeng, D., et al.: Segmentation with multiple acceptable annotations: a case study of myocardial segmentation in contrast echocardiography. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 478–491. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_37

    Chapter  Google Scholar 

  6. Ding, Y., et al.: Hardware design and the competency awareness of a neural network. Nat. Electron. 3(9), 514–523 (2020)

    Article  Google Scholar 

  7. Ding, Y., et al.: Uncertainty-aware training of neural networks for selective medical image segmentation. In: Medical Imaging with Deep Learning, pp. 156–173. PMLR (2020)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  9. Hoebel, K., et al.: An exploration of uncertainty information for segmentation quality assessment. In: Medical Imaging 2020: Image Processing, vol. 11313, p. 113131K. International Society for Optics and Photonics (2020)

    Google Scholar 

  10. Jungo, A., Meier, R., Ermis, E., Herrmann, E., Reyes, M.: Uncertainty-driven sanity check: application to postoperative brain tumor cavity segmentation. arXiv preprint arXiv:1806.03106 (2018)

  11. Liu, Z., et al.: Machine vision guided 3d medical image compression for efficient transmission and accurate segmentation in the clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12687–12696 (2019)

    Google Scholar 

  12. McErlean, A., et al.: Intra-and interobserver variability in CT measurements in oncology. Radiology 269(2), 451–459 (2013)

    Article  Google Scholar 

  13. Østvik, A., Smistad, E., Aase, S.A., Haugen, B.O., Lovstakken, L.: Real-time standard view classification in transthoracic echocardiography using convolutional neural networks. Ultrasound Med. Biol. 45(2), 374–384 (2019)

    Article  Google Scholar 

  14. Robinson, R., et al.: Real-time prediction of segmentation quality. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 578–585. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_66

    Chapter  Google Scholar 

  15. Snare, S.R., Torp, H., Orderud, F., Haugen, B.O.: Real-time scan assistant for echocardiography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3), 583–589 (2012)

    Article  Google Scholar 

  16. Ventura, C., Bellver, M., Girbau, A., Salvador, A., Marques, F., Giro-i Nieto, X.: RVOS: end-to-end recurrent network for video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5277–5286 (2019)

    Google Scholar 

  17. Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)

    Google Scholar 

  18. Wu, L., Cheng, J.Z., Li, S., Lei, B., Wang, T., Ni, D.: FUIQA: fetal ultrasound image quality assessment with deep convolutional networks. IEEE Trans. Cybern. 47(5), 1336–1349 (2017)

    Article  Google Scholar 

  19. Zhang, R., Chung, A.C.S.: A fine-grain error map prediction and segmentation quality assessment framework for whole-heart segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 550–558. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_61

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyu Shi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 163 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, Y. et al. (2021). Towards Efficient Human-Machine Collaboration: Real-Time Correction Effort Prediction for Ultrasound Data Acquisition. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics