Skip to main content

On the Relationship Between Calibrated Predictors and Unbiased Volume Estimation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Machine learning driven medical image segmentation has become standard in medical image analysis. However, deep learning models are prone to overconfident predictions. This has lead to a renewed focus on calibrated predictions in the medical imaging and broader machine learning communities. Calibrated predictions are estimates of the probability of a label that correspond to the true expected value of the label conditioned on the confidence. Such calibrated predictions have utility in a range of medical imaging applications, including surgical planning under uncertainty and active learning systems. At the same time it is often an accurate volume measurement that is of real importance for many medical applications. This work investigates the relationship between model calibration and volume estimation. We demonstrate both mathematically and empirically that if the predictor is calibrated per image, we can obtain the correct volume by taking an expectation of the probability scores per pixel/voxel of the image. Furthermore, we show that linear combinations of calibrated classifiers preserve volume estimation, but do not preserve calibration. Therefore, we conclude that having a calibrated predictor is a sufficient, but not necessary condition for obtaining an unbiased estimate of the volume. We validate our theoretical findings empirically on a collection of 18 different (calibrated) training strategies on the tasks of glioma volume estimation on BraTS 2018, and ischemic stroke lesion volume estimation on ISLES 2018 datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakas, S., Akbari, H., Sotiras, A., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 1–13 (2017)

    Article  Google Scholar 

  2. Bakas, S., Reyes, M., Jakab, A., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge (2018)

    Google Scholar 

  3. Baumgartner, C.F., et al.: PHiSeg: capturing uncertainty in medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_14

    Chapter  Google Scholar 

  4. Bertels, J., Robben, D., Vandermeulen, D., Suetens, P.: Theoretical analysis and experimental validation of volume bias of soft dice optimized segmentation maps in the context of inherent uncertainty. Med. Image Anal. 67, 101833 (2021)

    Article  Google Scholar 

  5. Bowley, A.L.: The standard deviation of the correlation coefficient. J. Am. Stat. Assoc. 23(161), 31–34 (1928)

    Article  Google Scholar 

  6. Demeestere, J., Garcia-Esperon, C., Garcia-Bermejo, P., et al.: Evaluation of hyperacute infarct volume using ASPECTS and brain CT perfusion core volume. Neurology 88(24), 2248–2253 (2017)

    Article  Google Scholar 

  7. Dubben, H.H., Thames, H.D., Beck-Bornholdt, H.P.: Tumor volume: a basic and specific response predictor in radiotherapy. Radiother. Oncol. 47(2), 167–174 (1998)

    Article  Google Scholar 

  8. Eaton-Rosen, Z., Bragman, F., Bisdas, S., Ourselin, S., Cardoso, M.J.: Towards safe deep learning: accurately quantifying biomarker uncertainty in neural network predictions. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 691–699. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_78

    Chapter  Google Scholar 

  9. Eelbode, T., Bertels, J., Berman, M., et al.: Optimization for medical image segmentation: Theory and practice when evaluating with Dice score or Jaccard index. IEEE Trans. Med. Imaging 39(11), 3679–3690 (2020)

    Article  Google Scholar 

  10. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of the 33rd International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  11. Gillmann, C., Maack, R.G., Post, T., Wischgoll, T., Hagen, H.: An uncertainty-aware workflow for keyhole surgery planning using hierarchical image semantics. Vis. Inf. 2(1), 26–36 (2018)

    Google Scholar 

  12. Goyal, M., Menon, B.K., Zwam, W.H.V., et al.: Endovascular thrombectomy after large-vessel Ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. The Lancet 387(10029), 1723–1731 (2016)

    Article  Google Scholar 

  13. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1321–1330 (2017)

    Google Scholar 

  14. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  15. Jungo, A., Balsiger, F., Reyes, M.: Analyzing the quality and challenges of uncertainty estimations for brain tumor segmentation. Front. Neurosci. 14, 282 (2020)

    Article  Google Scholar 

  16. Kohl, S.A., Romera-Paredes, B., Meyer, C., et al.: A probabilistic U-net for segmentation of ambiguous images. In: Advances in Neural Information Processing Systems, pp. 6965–6975 (2018)

    Google Scholar 

  17. Kumar, A., Liang, P.S., Ma, T.: Verified uncertainty calibration. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 3792–3803 (2019)

    Google Scholar 

  18. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, pp. 6403–6414 (2017)

    Google Scholar 

  19. Lee, A.J.: U-Statistics: Theory and Practice. Taylor & Francis (1990)

    Google Scholar 

  20. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2015)

    Article  Google Scholar 

  21. Naeini, M.P., Cooper, G.F., Hauskrecht, M.: Obtaining well calibrated probabilities using Bayesian binning. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence, pp. 2901–2907 (2015)

    Google Scholar 

  22. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, New York (2012). https://doi.org/10.1007/978-1-4612-0745-0

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Rousseau, A.J., Becker, T., Bertels, J., Blaschko, M., Valkenborg, D.: Post training uncertainty calibration of deep networks for medical image segmentation. In: ISBI (2021)

    Google Scholar 

  25. Tilborghs, S., Maes, F.: Left ventricular parameter regression from deep feature maps of a jointly trained segmentation CNN. In: Pop, M., et al. (eds.) STACOM 2019. LNCS, vol. 12009, pp. 395–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39074-7_41

    Chapter  Google Scholar 

  26. Wenger, J., Kjellström, H., Triebel, R.: Non-parametric calibration for classification. In: International Conference on Artificial Intelligence and Statistics, pp. 178–190 (2020)

    Google Scholar 

  27. Winzeck, S., Hakim, A., McKinley, R., et al.: ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI. Front. Neurol. 9, 679 (2018)

    Article  Google Scholar 

  28. Wu, J., Ruan, S., Lian, C., et al.: Active learning with noise modeling for medical image annotation. In: ISBI, pp. 298–301 (2018)

    Google Scholar 

Download references

Acknowledgments

This research received funding from the Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme. J.B. is part of NEXIS (www.nexis-project.eu), a project that has received funding from the European Union’s Horizon 2020 Research and Innovations Programme (Grant Agreement #780026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodora Popordanoska .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 272 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Popordanoska, T., Bertels, J., Vandermeulen, D., Maes, F., Blaschko, M.B. (2021). On the Relationship Between Calibrated Predictors and Unbiased Volume Estimation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics