Skip to main content

Contrastive Pre-training and Representation Distillation for Medical Visual Question Answering Based on Radiology Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12902))

Abstract

One of the primary challenges facing medical visual question answering (Med-VQA) is the lack of large-scale well-annotated datasets for training. To overcome this challenge, this paper proposes a two-stage pre-training framework by learning transferable feature representations of radiology images and distilling a lightweight visual feature extractor for Med-VQA. Specifically, we leverage large amounts of unlabeled radiology images to train three teacher models for the body regions of brain, chest, and abdomen respectively via contrastive learning. Then, we distill the teacher models to a lightweight student model that can be used as a universal visual feature extractor for any Med-VQA system. The lightweight feature extractor can be readily fine-tuned on the training radiology images of any Med-VQA dataset, saving the annotation effort while preventing overfitting to small-scale training data. The effectiveness and advantages of the pre-trained model are demonstrated by extensive experiments with state-of-the-art Med-VQA methods on existing benchmarks. The source code and the pre-training dataset can be downloaded from https://github.com/awenbocc/cprd.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://medicaldecathlon.com/.

  2. 2.

    MFB, SAN, and BAN stand for the key reasoning module of the respective framework, where the visual and textual modules can be any applicable models.

References

  1. Abacha, A.B., Gayen, S., Lau, J.J., Rajaraman, S., Demner-Fushman, D.: NLM at imageclef 2018 visual question answering in the medical domain. In: Working Notes of CLEF 2018 - Conference and Labs of the Evaluation Forum. CEUR Workshop Proceedings, Avignon, France, vol. 2125. CEUR-WS.org (2018)

    Google Scholar 

  2. Abacha, A.B., Hasan, S.A., Datla, V.V., Liu, J., Demner-Fushman, D., Müller, H.: VQA-Med: overview of the medical visual question answering task at ImageCLEF 2019. In: Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum. CEUR Workshop Proceedings, Lugano, Switzerland, vol. 2380. CEUR-WS.org (2019)

    Google Scholar 

  3. Antol, S., et al.: VQA: visual question answering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2425–2433 (2015)

    Google Scholar 

  4. Buciluundefined, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2006, New York, NY, USA. Association for Computing Machinery (2006)

    Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  6. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning (2020)

    Google Scholar 

  7. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning (2020)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput., 1735–1780 (1997)

    Google Scholar 

  11. Ionescu, B., et al.: Overview of ImageCLEF 2018: challenges, datasets and evaluation. In: Bellot, P., et al. (eds.) CLEF 2018. LNCS, vol. 11018, pp. 309–334. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98932-7_28

    Chapter  Google Scholar 

  12. Kim, J., Jun, J., Zhang, B.: Bilinear attention networks. In: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems, NeurIPS, Montréal, Canada, pp. 1571–1581. NeurIPS (2018)

    Google Scholar 

  13. Lau, J.J., Gayen, S., Abacha, A.B., Demner-Fushman, D.: A dataset of clinically generated visual questions and answers about radiology images. Sci. Data 5, 1–10 (2018)

    Google Scholar 

  14. Liu, B., Zhan, L.M., Xu, L., Ma, L., Yang, Y., Wu, X.M.: SLAKE: a semantically-labeled knowledge-enhanced dataset for medical visual question answering (2021)

    Google Scholar 

  15. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. (2008)

    Google Scholar 

  16. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011, Part I. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7

    Chapter  Google Scholar 

  17. Nguyen, B.D., Do, T.-T., Nguyen, B.X., Do, T., Tjiputra, E., Tran, Q.D.: Overcoming data limitation in medical visual question answering. In: Shen, D., et al. (eds.) MICCAI 2019, Part IV. LNCS, vol. 11767, pp. 522–530. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_57

    Chapter  Google Scholar 

  18. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  19. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP, A meeting of SIGDAT, a Special Interest Group of the ACL, Doha, Qatar, pp. 1532–1543. ACL (2014)

    Google Scholar 

  20. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  21. Shi, L., Liu, F., Rosen, M.P.: Deep multimodal learning for medical visual question answering. In: Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum. CEUR Workshop Proceedings, vol. 2380, Lugano, Switzerland. CEUR-WS.org (2019)

    Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  23. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. arXiv preprint arXiv:1910.10699 (2019)

  24. Vuorio, R., Sun, S., Hu, H., Lim, J.J.: Multimodal model-agnostic meta-learning via task-aware modulation. In: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems, NeurIPS, Vancouver, BC, Canada, pp. 1–12 (2019)

    Google Scholar 

  25. Wu, Z., Xiong, Y., Yu, S., Lin, D.: Unsupervised feature learning via non-parametric instance-level discrimination. arXiv preprint arXiv:1805.01978 (2018)

  26. Yan, X., Li, L., Xie, C., Xiao, J., Gu, L.: Zhejiang university at ImageCLEF 2019 visual question answering in the medical domain. In: Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum. CEUR Workshop Proceedings, Lugano, Switzerland, vol. 2380. CEUR-WS.org (2019)

    Google Scholar 

  27. Yang, Z., He, X., Gao, J., Deng, L., Smola, A.J.: Stacked attention networks for image question answering. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 21–29. IEEE Computer Society (2016)

    Google Scholar 

  28. Yu, Z., Yu, J., Fan, J., Tao, D.: Multi-modal factorized bilinear pooling with co-attention learning for visual question answering (2017)

    Google Scholar 

  29. Zhan, L.M., Liu, B., Fan, L., Chen, J., Wu, X.M.: Medical visual question answering via conditional reasoning. In: Proceedings of the 28th ACM International Conference on Multimedia, MM 2020, New York, NY, USA. Association for Computing Machinery (2020)

    Google Scholar 

Download references

Acknowledgment

This research was supported by the grant of P0030935 (ZVPY) funded by PolyU (UGC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ming Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, B., Zhan, LM., Wu, XM. (2021). Contrastive Pre-training and Representation Distillation for Medical Visual Question Answering Based on Radiology Images. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12902. Springer, Cham. https://doi.org/10.1007/978-3-030-87196-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87196-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87195-6

  • Online ISBN: 978-3-030-87196-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics