Skip to main content

Inter-regional High-Level Relation Learning from Functional Connectivity via Self-supervision

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12902))

Abstract

In recent studies, we have witnessed the applicability of deep learning methods on resting-state functional magnetic resonance image (rs-fMRI) analysis and its use for brain disease diagnosis, e.g., autism spectrum disorder (ASD). However, it still remains challenging to learn discriminative representations from raw BOLD signals or functional connectivity (FC) with a limited number of samples. In this paper, we propose a simple but efficient representation learning method for FC in a self-supervised learning manner. Specifically, we devise a proxy task of estimating the randomly masked seed-based functional networks from the remaining ones in FC, to discover the complex high-level relations among brain regions, which are not directly observable from an input FC. Thanks to the random masking strategy in our proxy task, it also has the effect of augmenting training samples, thus allowing for robust training. With the pretrained feature representation network in a self-supervised manner, we then construct a decision network for the downstream task of ASD diagnosis. In order to validate the effectiveness of our proposed method, we used the ABIDE dataset that collected subjects from multiple sites and our proposed method showed superiority to the comparative methods in various metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://fcon_1000.projects.nitrc.org/indi/abide/.

  2. 2.

    {UM, NYU, MAX MUN, OHSU, SBL, OLIN, SDSU, CALTECH, TRINITY, YALE, PITT, LEUVEN, UCLA, USM, STANFORD, CMU, and KKI}.

  3. 3.

    http://preprocessed-connectomes-project.org/abide/Pipelines.html.

  4. 4.

    Note that the input FC \(\mathbf {X}\) represents first-order relation among ROIs, and the \(\ell \)-th hidden layer finds (\(\ell +1\))-th relations among ROIs.

References

  1. Abraham, A., et al.: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example. NeuroImage 147, 736–745 (2017)

    Article  Google Scholar 

  2. Bengio, Y.: Learning Deep Architectures for AI. Now Publishers Inc, Hanover (2009)

    Google Scholar 

  3. Biswal, B.B.: Resting state fMRI: a personal history. Neuroimage 62(2), 938–944 (2012)

    Article  Google Scholar 

  4. Brier, M.R., et al.: Loss of intranetwork and internetwork resting state functional connections with alzheimer’s disease progression. J. Neurosci. 32(26), 8890–8899 (2012)

    Article  Google Scholar 

  5. Chao-Gan, Y., Yu-Feng, Z.: DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4 (2010)

    Google Scholar 

  6. Chen, X., et al.: High-order resting-state functional connectivity network for MCI classification. Hum. Brain Map. 37(9), 3282–3296 (2016)

    Article  Google Scholar 

  7. Cribben, I., Haraldsdottir, R., Atlas, L.Y., Wager, T.D., Lindquist, M.A.: Dynamic connectivity regression: determining state-related changes in brain connectivity. Neuroimage 61(4), 907–920 (2012)

    Article  Google Scholar 

  8. Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  9. Dichter, G.S.: Functional magnetic resonance imaging of autism spectrum disorders. Dial. Clin. Neurosci. 14(3), 319 (2012)

    Article  Google Scholar 

  10. Heinsfeld, A.S., Franco, A.R., Craddock, R.C., Buchweitz, A., Meneguzzi, F.: Identification of autism spectrum disorder using deep learning and the abide dataset. NeuroImage Clin. 17, 16–23 (2018)

    Google Scholar 

  11. Hjelm, R.D., Calhoun, V.D., Salakhutdinov, R., Allen, E.A., Adali, T., Plis, S.M.: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks. NeuroImage 96, 245–260 (2014)

    Article  Google Scholar 

  12. Hu, X., et al.: Latent source mining in fMRI via restricted Boltzmann machine. Hum. Brain Map. 39(6), 2368–2380 (2018)

    Article  Google Scholar 

  13. Jeon, E., Kang, E., Lee, J., Lee, J., Kam, T.-E., Suk, H.-I.: Enriched representation learning in resting-state fMRI for early MCI diagnosis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 397–406. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_39

    Chapter  Google Scholar 

  14. Kang, E., Suk, H.-I.: Probabilistic source separation on resting-state fMRI and its use for early MCI identification. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 275–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_32

    Chapter  Google Scholar 

  15. Kim, J., Calhoun, V.D., Shim, E., Lee, J.H.: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage 124, 127–146 (2016)

    Article  Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Lee, L., Harrison, L.M., Mechelli, A.: A report of the functional connectivity workshop, Dusseldorf 2002. Neuroimage 19(2), 457–465 (2003)

    Article  Google Scholar 

  18. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  19. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)

    Article  Google Scholar 

  20. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  21. Rakić, M., Cabezas, M., Kushibar, K., Oliver, A., Lladó, X.: Improving the detection of autism spectrum disorder by combining structural and functional MRI information. NeuroImage Clin. 25, 102181 (2020)

    Google Scholar 

  22. Suk, H.I., Wee, C.Y., Lee, S.W., Shen, D.: State-space model with deep learning for functional dynamics estimation in resting-state fMRI. NeuroImage 129, 292–307 (2016)

    Article  Google Scholar 

  23. Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D.: Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput. Biol. 4(6), e1000100 (2008)

    Article  Google Scholar 

  24. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1), 273–289 (2002)

    Article  Google Scholar 

  25. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008)

    Google Scholar 

  26. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12) (2010)

    Google Scholar 

  27. Zhao, F., Chen, Z., Rekik, I., Lee, S.W., Shen, D.: Diagnosis of autism spectrum disorder using central-moment features from low-and high-order dynamic resting-state functional connectivity networks. Front. Neurosci. 14 (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C1006543) and by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No. 2019-0-00079, Artificial Intelligence Graduate School Program (Korea University)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung-Il Suk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jung, W., Heo, DW., Jeon, E., Lee, J., Suk, HI. (2021). Inter-regional High-Level Relation Learning from Functional Connectivity via Self-supervision. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12902. Springer, Cham. https://doi.org/10.1007/978-3-030-87196-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87196-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87195-6

  • Online ISBN: 978-3-030-87196-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics