Skip to main content

Towards Semantic Interpretation of Thoracic Disease and COVID-19 Diagnosis Models

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Convolutional neural networks are showing promise in the automatic diagnosis of thoracic pathologies on chest x-rays. Their black-box nature has sparked many recent works to explain the prediction via input feature attribution methods (aka saliency methods). However, input feature attribution methods merely identify the importance of input regions for the prediction and lack semantic interpretation of model behavior. In this work, we first identify the semantics associated with internal units (feature maps) of the network. We proceed to investigate the following questions; Does a regression model that is only trained with COVID-19 severity scores implicitly learn visual patterns associated with thoracic pathologies? Does a network that is trained on weakly labeled data (e.g. healthy, unhealthy) implicitly learn pathologies? Moreover, we investigate the effect of pretraining and data imbalance on the interpretability of learned features. In addition to the analysis, we propose semantic attribution to semantically explain each prediction. We present our findings using publicly available chest pathologies (CheXpert [5], NIH ChestX-ray8 [25]) and COVID-19 datasets (BrixIA [20], and COVID-19 chest X-ray segmentation dataset [4]). The Code (https://github.com/CAMP-eXplain-AI/CheXplain-Dissection) is publicly available.

S. T. Kim and N. Navab shared senior authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Article  Google Scholar 

  2. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6541–6549 (2017)

    Google Scholar 

  3. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. CoRR abs/1608.06993 (2016). http://arxiv.org/abs/1608.06993

  4. Inc, G.B.: Covid-19 chest x-ray segmentations dataset. https://github.com/GeneralBlockchain/covid-19-chest-xray-segmentations-dataset

  5. Irvin, J., et al.: Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 590–597 (2019)

    Google Scholar 

  6. Johnson, A.E., et al.: MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs. arXiv preprint arXiv:1901.07042 (2019)

  7. Karim, M., Döhmen, T., Rebholz-Schuhmann, D., Decker, S., Cochez, M., Beyan, O., et al.: Deepcovidexplainer: Explainable covid-19 predictions based on chest x-ray images. arXiv preprint arXiv:2004.04582 (2020)

  8. Khakzar, A., Albarqouni, S., Navab, N.: Learning interpretable features via adversarially robust optimization. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 793–800. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_88

    Chapter  Google Scholar 

  9. Khakzar, A., Baselizadeh, S., Khanduja, S., Rupprecht, C., Kim, S.T., Navab, N.: Neural response interpretation through the lens of critical pathways. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  10. Khakzar, A., et al.: Explaining COVID-19 and thoracic pathology model predictions by identifying informative input features (2021)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Li, Z., et al.: Thoracic disease identification and localization with limited supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8290–8299 (2018)

    Google Scholar 

  13. Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., Clune, J.: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: Advances in Neural Information Processing Systems, pp. 3387–3395 (2016)

    Google Scholar 

  14. Oh, Y., Park, S., Ye, J.C.: Deep learning COVID-19 features on CXR using limited training data sets. IEEE Trans. Med. Imaging 39(8), 2688–2700 (2020)

    Article  Google Scholar 

  15. Olah, C., Mordvintsev, A., Schubert, L.: Feature visualization. Distill (2017). https://doi.org/10.23915/distill.00007, https://distill.pub/2017/feature-visualization

  16. Punn, N.S., Agarwal, S.: Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray images using fine-tuned deep neural networks. Appl. Intell. 51(5), 2689–2702 (2020). https://doi.org/10.1007/s10489-020-01900-3

    Article  Google Scholar 

  17. Rajpurkar, P., et al.: Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

  18. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  19. Shapley, L.S.: A value for n-person games. Contrib. Theor. Games 2(28), 307–317 (1953)

    MathSciNet  MATH  Google Scholar 

  20. Signoroni, A., et al.: End-to-end learning for semiquantitative rating of COVID-19 severity on chest X-rays. arXiv preprint arXiv:2006.04603 (2020)

  21. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

  22. Sundararajan, M., Najmi, A.: The many Shapley values for model explanation. In: 37th International Conference on Machine Learning, ICML 2020 (2020)

    Google Scholar 

  23. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Conference on Machine Learning, pp. 3319–3328. PMLR (2017)

    Google Scholar 

  24. Taghanaki, S.A., et al.: InfoMask: Masked Variational Latent Representation to Localize Chest Disease. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 739–747. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_82

    Chapter  Google Scholar 

  25. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

  26. Wu, J., et al.: Deepminer: discovering interpretable representations for mammogram classification and explanation. arXiv preprint arXiv:1805.12323 (2018)

  27. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

Download references

Acknowledgement

This work is partially funded by the Munich Center for Machine Learning (MCML) and the Bavarian Research Foundation grant AZ-1429-20C. The computational resources for the study are provided by the Amazon Web Services Diagnostic Development Initiative. S.T. Kim is supported by the Korean MSIT, under the National Program for Excellence in SW (2017-0-00093), supervised by the IITP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Tae Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khakzar, A. et al. (2021). Towards Semantic Interpretation of Thoracic Disease and COVID-19 Diagnosis Models. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87199-4_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87198-7

  • Online ISBN: 978-3-030-87199-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics