Skip to main content

Variational Topic Inference for Chest X-Ray Report Generation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12903))

Abstract

Automating report generation for medical imaging promises to reduce workload and assist diagnosis in clinical practice. Recent work has shown that deep learning models can successfully caption natural images. However, learning from medical data is challenging due to the diversity and uncertainty inherent in the reports written by different radiologists with discrepant expertise and experience. To tackle these challenges, we propose variational topic inference for automatic report generation. Specifically, we introduce a set of topics as latent variables to guide sentence generation by aligning image and language modalities in a latent space. The topics are inferred in a conditional variational inference framework, with each topic governing the generation of a sentence in the report. Further, we adopt a visual attention module that enables the model to attend to different locations in the image and generate more informative descriptions. We conduct extensive experiments on two benchmarks, namely Indiana U. Chest X-rays and MIMIC-CXR. The results demonstrate that our proposed variational topic inference method can generate novel reports rather than mere copies of reports used in training, while still achieving comparable performance to state-of-the-art methods in terms of standard language generation criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  2. Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space. In: Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, pp. 10–21 (2016)

    Google Scholar 

  3. Chen, Z., Song, Y., Chang, T.H., Wan, X.: Generating radiology reports via memory-driven transformer. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (2020)

    Google Scholar 

  4. Demner-Fushman, D., et al.: Preparing a collection of radiology examinations for distribution and retrieval. J. Am. Med. Inform. Assoc.: JAMIA 23, 304–10 (2016)

    Article  Google Scholar 

  5. Fu, H., Li, C., Liu, X., Gao, J., Celikyilmaz, A., Carin, L.: Cyclical annealing schedule: a simple approach to mitigating KL vanishing. In: North American Chapter of the Association for Computational Linguistics, pp. 240–250 (2019)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  8. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  9. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: 33rd AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  10. Jing, B., Wang, Z., Xing, E.: Show, describe and conclude: on exploiting the structure information of chest X-ray reports. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 6570–6580. Association for Computational Linguistics, July 2019

    Google Scholar 

  11. Jing, B., Xie, P., Xing, E.: On the automatic generation of medical imaging reports. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (2018)

    Google Scholar 

  12. Johnson, A.E., et al.: MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs. arXiv preprint arXiv:1901.07042 (2019)

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  15. Kohl, S.A., et al.: A probabilistic U-Net for segmentation of ambiguous images. arXiv preprint arXiv:1806.05034 (2018)

  16. Lavie, A., Denkowski, M.J.: The Meteor metric for automatic evaluation of machine translation. Mach. Transl. 23, 105–115 (2009). https://doi.org/10.1007/s10590-009-9059-4

    Article  Google Scholar 

  17. Li, Y., Liang, X., Hu, Z., Xing, E.P.: Hybrid retrieval-generation reinforced agent for medical image report generation. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  18. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. Association for Computational Linguistics (ACL) (2004)

    Google Scholar 

  19. Liu, G., et al.: Clinically accurate chest x-ray report generation. In: Machine Learning for Healthcare Conference, pp. 249–269 (2019)

    Google Scholar 

  20. Lovelace, J., Mortazavi, B.: Learning to generate clinically coherent chest X-ray reports. In: Findings of the Association for Computational Linguistics: EMNLP, pp. 1235–1243 (2020)

    Google Scholar 

  21. Lu, J., Xiong, C., Parikh, D., Socher, R.: Knowing when to look: adaptive attention via a visual sentinel for image captioning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 375–383 (2017)

    Google Scholar 

  22. Luo, R., Shakhnarovich, G.: Analysis of diversity-accuracy tradeoff in image captioning (2020)

    Google Scholar 

  23. Mahajan, S., Roth, S.: Diverse image captioning with context-object split latent spaces. In: Advances in Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  24. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Association for Computational Linguistics, pp. 311–318 (2002)

    Google Scholar 

  25. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  26. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  27. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  28. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2015)

    Google Scholar 

  29. Wang, W., et al.: Topic-guided variational auto-encoder for text generation. North American Chapter of the Association for Computational Linguistics (2019)

    Google Scholar 

  30. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

    Google Scholar 

  31. Xue, Y., Huang, X.: Improved disease classification in chest X-rays with transferred features from report generation. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 125–138. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_10

    Chapter  Google Scholar 

  32. Xue, Y., et al.: Multimodal recurrent model with attention for automated radiology report generation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 457–466. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_52

    Chapter  Google Scholar 

  33. Yuan, J., Liao, H., Luo, R., Luo, J.: Automatic radiology report generation based on multi-view image fusion and medical concept enrichment. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 721–729. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_80

    Chapter  Google Scholar 

  34. Zhang, Y., Chen, Q., Yang, Z., Lin, H., Lu, Z.: BioWordVec: improving biomedical word embeddings with subword information and MeSH ontology (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivona Najdenkoska .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1084 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Najdenkoska, I., Zhen, X., Worring, M., Shao, L. (2021). Variational Topic Inference for Chest X-Ray Report Generation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87199-4_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87198-7

  • Online ISBN: 978-3-030-87199-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics