Skip to main content

Personalized Respiratory Motion Model Using Conditional Generative Networks for MR-Guided Radiotherapy

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

MRI-guided radiotherapy systems enable real-time 2D cine acquisitions for target monitoring, but cannot provide volumetric information due to spatio-temporal constraints. Hence, respiratory motion models coupled with a temporal predictive mechanism are a suitable solution to enable ahead-of-time 3D tumor and anatomy tracking in combination with real-time online plan adaptation. We propose a novel subject-specific probabilistic model to enable 3D+t predictions from image-based surrogates during radiotherapy treatments. The model is trained end-to-end to simultaneously capture and learn a distribution of realistic motion fields over a population dataset. Furthermore, the distribution is conditioned on a sequence of partial observations, which can be extrapolated in time using a \( {seq2seq}\)-inspired mechanism allowing for scalable predictive horizon. Based on the generative properties of conditional variational autoencoders, it integrates anatomical features and temporal information to construct an interpretable latent space with respiratory phase discrimination. The choice of a probabilistic framework allows improving uncertainty estimation during the volume generation phase. Experimental validation on 25 subjects demonstrates the potential of the proposed model, which achieves a mean landmark error of \(1.4 \pm 1.1\) mm, yielding statistically significant improvements over state-of-the-art methods.

Supported by NSERC research grant (CRDPJ-517413-17) and by the Canada First Research Excellence Fund through the TransMedTech Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdi, A.H., Pesteie, M., Prisman, E., Abolmaesumi, P., Fels, S.: Variational shape completion for virtual planning of jaw reconstructive surgery. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 227–235. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_26

    Chapter  Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  3. Ballas, N., Yao, L., Pal, C., Courville, A.C.: Delving deeper into convolutional networks for learning video representations. In: ICLR (Poster) (2016)

    Google Scholar 

  4. Ehrhardt, J., Lorenz, C., et al.: 4D Modeling and Estimation of Respiratory Motion for Radiation Therapy. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36441-9

  5. Fayad, H.J., Buerger, C., Tsoumpas, C., Cheze-Le-Rest, C., Visvikis, D.: A generic respiratory motion model based on 4D MRI imaging and 2D image navigators. In: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), pp. 4058–4061. IEEE (2012)

    Google Scholar 

  6. Garau, N., et al.: A ROI-based global motion model established on 4DCT and 2D cine-MRI data for MRI-guidance in radiation therapy. Phys. Med. Biol. 64(4), 045002 (2019)

    Article  Google Scholar 

  7. Giger, A., et al.: Respiratory motion modelling using cGANs. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 81–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_10

    Chapter  Google Scholar 

  8. Giger, A.T., et al.: Liver-ultrasound based motion modelling to estimate 4D dose distributions for lung tumours in scanned proton therapy. Phys. Med. Biol. 65(23), 235050 (2020)

    Article  Google Scholar 

  9. Harris, W., Yin, F.F., Cai, J., Ren, L.: Volumetric cine magnetic resonance imaging (VC-MRI) using motion modeling, free-form deformation and multi-slice undersampled 2D cine MRI reconstructed with spatio-temporal low-rank decomposition. Quant. Imaging Med. Surg. 10(2), 432 (2020)

    Article  Google Scholar 

  10. Henke, L., et al.: Phase I trial of stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen. Radiother. Oncol. 126(3), 519–526 (2018)

    Article  Google Scholar 

  11. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  12. Jud, C., Preiswerk, F., Cattin, P.C.: Respiratory motion compensation with topology independent surrogates. In: Workshop on Imaging and Computer Assistance in Radiation Therapy (2015)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. CoRR arXiv:1312.6114 (2013)

  15. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: elastix: A toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2009)

    Article  Google Scholar 

  16. McClelland, J.R., Hawkes, D.J., Schaeffter, T., King, A.P.: Respiratory motion models: a review. Med. Image Anal. 17(1), 19–42 (2013)

    Article  Google Scholar 

  17. Mezheritsky, T., Romaguera, L.V., Kadoury, S.: 3D ultrasound generation from partial 2D observations using fully convolutional and spatial transformation networks. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1808–1811. IEEE (2020)

    Google Scholar 

  18. Paganelli, C., et al.: Time-resolved volumetric MRI in MRI-guided radiotherapy: an in silico comparative analysis. Phys. Med. Biol. 64(18), 185013 (2019)

    Article  Google Scholar 

  19. Paganelli, C., et al.: Feasibility study on 3D image reconstruction from 2D orthogonal cine-MRI for MRI-guided radiotherapy. J. Med. Imaging Radiat. Oncol. 62(3), 389–400 (2018)

    Article  Google Scholar 

  20. Pham, J., Harris, W., Sun, W., Yang, Z., Yin, F.F., Ren, L.: Predicting real-time 3D deformation field maps (DFM) based on volumetric cine MRI (VC-MRI) and artificial neural networks for on-board 4D target tracking: a feasibility study. Phys. Med. Biol. 64(16), 165016 (2019)

    Article  Google Scholar 

  21. Preiswerk, F., et al.: Model-guided respiratory organ motion prediction of the liver from 2D ultrasound. Med. Image Anal. 18(5), 740–751 (2014)

    Article  Google Scholar 

  22. Qin, C., et al.: Joint learning of motion estimation and segmentation for cardiac MR image sequences. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 472–480. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_53

    Chapter  Google Scholar 

  23. Romaguera, L.V., Plantefève, R., Romero, F.P., Hébert, F., Carrier, J.F., Kadoury, S.: Prediction of in-plane organ deformation during free-breathing radiotherapy via discriminative spatial transformer networks. Med. Image Anal. 64, 101754 (2020)

    Article  Google Scholar 

  24. Seregni, M., Paganelli, C., Kipritidis, J., Baroni, G., Riboldi, M.: Out-of-plane motion correction in orthogonal cine-MRI registration. Radiother. Oncol. 123, S147–S148 (2017)

    Article  Google Scholar 

  25. von Siebenthal, M., Szekely, G., Gamper, U., Boesiger, P., Lomax, A., Cattin, P.: 4D MR imaging of respiratory organ motion and its variability. Phys. Med. Biol. 52(6), 1547 (2007)

    Article  Google Scholar 

  26. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Advances in Neural Information Processing Systems, pp. 3483–3491 (2015)

    Google Scholar 

  27. Stemkens, B., Tijssen, R.H., De Senneville, B.D., Lagendijk, J.J., Van Den Berg, C.A.: Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy. Phys. Med. Biol. 61(14), 5335 (2016)

    Article  Google Scholar 

  28. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. arXiv preprint arXiv:1409.3215 (2014)

  29. Tanner, C., et al.: In vivo validation of spatio-temporal liver motion prediction from motion tracked on MR thermometry images. Int. J. Comput. Assist. Radiol. Surg. 11(6), 1143–1152 (2016)

    Article  Google Scholar 

  30. Zhang, Y., Yin, F.F., Pan, T., Vergalasova, I., Ren, L.: Preliminary clinical evaluation of a 4D-CBCT estimation technique using prior information and limited-angle projections. Radiother. Oncol. 115(1), 22–29 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liset Vázquez Romaguera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vázquez Romaguera, L., Mezheritsky, T., Kadoury, S. (2021). Personalized Respiratory Motion Model Using Conditional Generative Networks for MR-Guided Radiotherapy. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87202-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87201-4

  • Online ISBN: 978-3-030-87202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics