Skip to main content

C-Arm Positioning for Spinal Standard Projections in Different Intra-operative Settings

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Trauma and orthopedic surgeries that involve fluoroscopic guidance crucially depend on the acquisition of correct anatomy-specific standard projections for monitoring and evaluating the surgical result. This implies repeated acquisitions or even continuous fluoroscopy. To reduce radiation exposure and time, we propose to automate this procedure and estimate the C-arm pose update directly from a first X-ray without the need for a pre-operative computed tomography scan (CT) or additional technical equipment. Our method is trained on digitally reconstructed radiographs (DRRs) which uniquely provide ground truth labels for arbitrary many training examples. The simulated images are complemented with automatically generated segmentations, landmarks, as well as a k-wire and screw simulation. To successfully achieve a transfer from simulated to real X-rays, and also to increase the interpretability of results, the pipeline was designed by closely reflecting on the actual clinical decision-making of spinal neurosurgeons. It explicitly incorporates steps like region-of-interest (ROI) localization, detection of relevant and view-independent landmarks, and subsequent pose regression. To validate the method on real X-rays, we performed a large specimen study with and without implants (i.e. k-wires and screws). The proposed procedure obtained superior C-arm positioning accuracy (\(p_{wilcoxon}\ll 0.01\)), robustness, and generalization capabilities compared to the state-of-the-art direct pose regression framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bier, B., et al.: Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views. Int. J. Comput. Assist. Radiol. Surg. 14(9), 1463–1473 (2019). https://doi.org/10.1007/s11548-019-01975-5

    Article  Google Scholar 

  2. Binder, N., Bodensteiner, C., Matthäus, L., Burgkart, R., Schweikard, A.: Image guided positioning for an interactive C-arm fluoroscope. Int. J. Comput. Assist. Radiol. Surg., 5–7 (2006)

    Google Scholar 

  3. Bott, O., Dresing, K., Wagner, M., Raab, B., Teistler, M.: Informatics in radiology: use of a C-arm fluoroscopy simulator to support training in intraoperative radiography. Radiographics 31(3), E65–E75 (2011). https://doi.org/10.1148/rg.313105125

    Article  Google Scholar 

  4. Bui, M., Albarqouni, S., Schrapp, M., Navab, N., Ilic, S.: X-ray PoseNet: 6 DoF pose estimation for mobile X-ray devices. In: 2017 IEEE Winter Conference on Applications of Computer Vision, pp. 1036–1044 (2017). https://doi.org/10.1109/WACV.2017.120

  5. De Silva, T., et al.: C-arm positioning using virtual fluoroscopy for image-guided surgery. In: Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling 10135, p. 101352K (2017)

    Google Scholar 

  6. Fotouhi, J., et al.: Interactive flying frustums (IFFs): spatially aware surgical data visualization. Int. J. Comput. Assist. Radiol. Surg., 913–922 (2019)

    Google Scholar 

  7. Gong, R., Jenkins, B., Sze, R., Yaniv, Z.: A cost effective and high fidelity fluoroscopy simulator using the image-guided surgery toolkit (IGSTK). In: Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling 9036, p. 903618 (2014)

    Google Scholar 

  8. Grupp, R., et al.: Automatic annotation of hip anatomy in fluoroscopy for robust and efficient 2D/3D registration. Int. J. Comput. Assist. Radiol. Surg., 1–11 (2020). http://dx.doi.org/10.1007/s11548-020-02162-7

  9. Haiderbhai, M., Turrubiates, J., Gutta, V., Fallavollita, P.: Automatic C-arm positioning using multi-functional user interface. CMBES Proc. 42 (2019)

    Google Scholar 

  10. Hou, B., et al.: Predicting slice-to-volume transformation in presence of arbitrary subject motion. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 296–304. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_34

    Chapter  Google Scholar 

  11. Isensee, F., et al.: nnU-Net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

  12. Isensee, F., et al.: batchgenerators - a python framework for data augmentation. (2020). https://doi.org/10.5281/zenodo.3632567

  13. Kausch, L., et al.: Toward automatic C-arm positioning for standard projections in orthopedic surgery. Int. J. Comput. Assist. Radiol. Surg., 1–11 (2020). https://doi.org/10.1007/s11548-020-02204-0

  14. Kausch, L., Scherer, M., Thomas, S., Klein, A., Isensee, F., Maier-Hein, K.: Automatic image-based pedicle screw planning. In: Medical Imaging 2021: Image-Guided Procedures, Robotic Interventions, and Modeling 11598, pp. 115981I (2021). https://doi.org/10.1117/12.2582571

  15. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  16. Klein, A., Wasserthal, J., Greiner, M., Zimmerer, D., Maier-Hein, K.: MIC-DKFZ/basic\_unet\_example: Release (v2019.01) (2019). Zenodo. https://doi.org/10.5281/zenodo.2549509

  17. Kordon, F., Maier, A., Swartman, B., Kunze, H.: Font augmentation: implant and surgical tool simulation for X-ray image processing. Bildverarbeitung für die Medizin, 176–182 (2020). http://dx.doi.org/10.1007/978-3-658-29267-6_36

  18. Kügler, D., et al.: i3PosNet: instrument pose estimation from X-ray in temporal bone surgery. Int. J. Comput. Assist. Radiol. Surg. 15(7), 1137–1145 (2020). https://doi.org/10.1007/s11548-020-02157-4

    Article  Google Scholar 

  19. Löffler, M., et al.: A vertebral segmentation dataset with fracture grading. Radiol. Artif. Intell. 2(4), e190138 (2020). http://dx.doi.org/10.1148/ryai.2020190138

  20. Matthews, F., et al.: Navigating the fluoroscope’s C-arm back into position: an accurate and practicable solution to cut radiation and optimize intraoperative workflow. J. Orthopaedic Trauma 21(10), 687–692 (2007)

    Google Scholar 

  21. Miao, S., Wang, Z., Liao, R.: A CNN regression approach for real-time 2D/3D registration. IEEE Trans. Med. Imaging 35(5), 1352–1363 (2016). https://doi.org/10.1109/TMI.2016.2521800

    Article  Google Scholar 

  22. Rikli, D., et al.: Optimizing intraoperative imaging during proximal femoral fracture fixation – a performance improvement program for surgeons. Injury 104, 19–19 (2018). https://doi.org/10.1016/j.injury.2017.11.024

    Article  Google Scholar 

  23. Toth, D., Cimen, S., Ceccaldi, P., Kurzendorfer, T., Rhode, K., Mountney, P.: Training deep networks on domain randomized synthetic X-ray data for cardiac interventions. In: International Conference on Medical Imaging with Deep Learning, pp. 468–482 (2019)

    Google Scholar 

  24. Unberath, M., et al.: Augmented reality-based feedback for technician-in-the-loop C-arm repositioning. Healthcare Technol. Lett., 143–147 (2018). http://dx.doi.org/10.1049/htl.2018.5066

  25. Unberath, M., et al.: DeepDRR – a catalyst for machine learning in fluoroscopy-guided procedures. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 98–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_12

    Chapter  Google Scholar 

  26. Unberath, M., et al.: Enabling machine learning in x-ray-based procedures via realistic simulation of image formation. Int. J. Comput. Assist. Radiol. Surg. 14(9), 1517–1528 (2019). https://doi.org/10.1007/s11548-019-02011-2

    Article  Google Scholar 

  27. Zhang, Y., Miao, S., Mansi, T., Liao, R.: Task driven generative modeling for unsupervised domain adaptation: application to X-ray image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 599–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_67

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Kausch .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 630 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kausch, L. et al. (2021). C-Arm Positioning for Spinal Standard Projections in Different Intra-operative Settings. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87202-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87201-4

  • Online ISBN: 978-3-030-87202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics