Skip to main content

Cross-Modal Attention for MRI and Ultrasound Volume Registration

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Prostate cancer biopsy benefits from accurate fusion of transrectal ultrasound (TRUS) and magnetic resonance (MR) images. In the past few years, convolutional neural networks (CNNs) have been proved powerful in extracting image features crucial for image registration. However, challenging applications and recent advances in computer vision suggest that CNNs are quite limited in its ability to understand spatial correspondence between features, a task in which the self-attention mechanism excels. This paper aims to develop a self-attention mechanism specifically for cross-modal image registration. Our proposed cross-modal attention block effectively maps each of the features in one volume to all features in the corresponding volume. Our experimental results demonstrate that a CNN network designed with the cross-modal attention block embedded outperforms an advanced CNN network 10 times of its size. We also incorporated visualization techniques to improve the interpretability of our network. The source code of our work is available at https://github.com/DIAL-RPI/Attention-Reg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  2. Bashkanov, O., et al.: Learning multi-modal volumetric prostate registration with weak inter-subject spatial correspondence (2021)

    Google Scholar 

  3. Guo, H., Kruger, M., Xu, S., Wood, B.J., Yan, P.: Deep adaptive registration of multi-modal prostate images. Comput. Med. Imaging Graph. 84, 101769 (2020)

    Google Scholar 

  4. Haskins, G., et al.: Learning deep similarity metric for 3D MR-TRUS image registration. Int. J. Comput. Assist. Radiol. Surg. 14(3), 417–425 (2019)

    Article  Google Scholar 

  5. Haskins, G., Kruger, U., Yan, P.: Deep learning in medical image registration: a survey. Mach. Vis. Appl. 31(1), 8 (2020)

    Google Scholar 

  6. Heinrich, M.P., et al.: MIND: modality independent neighbourhood descriptor for multi-modal deformable registration. Med. Image Anal. 16(7), 1423–1435 (2012)

    Article  Google Scholar 

  7. Hu, Y., et al.: Weakly-supervised convolutional neural networks for multimodal image registration. Med. Image Anal. 49, 1–13 (2018)

    Article  Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE TMI 16(2), 187–198 (1997)

    Google Scholar 

  10. Paszke, A., Gross, S., Chintala, S., et al.: Automatic differentiation in pytorch. In: NIPS 2017 Workshop Autodiff, pp. 1–4 (2017)

    Google Scholar 

  11. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  12. Sun, Y., Moelker, A., Niessen, W.J., van Walsum, T.: Towards robust CT-ultrasound registration using deep learning methods. In: Stoyanov, D., et al. (eds.) MLCN/DLF/IMIMIC -2018. LNCS, vol. 11038, pp. 43–51. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02628-8_5

    Chapter  Google Scholar 

  13. Thomson, B.R., et al.: MR-to-US registration using multiclass segmentation of hepatic vasculature with a reduced 3D U-Net. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 275–284. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_27

    Chapter  Google Scholar 

  14. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Staring, M., Išgum, I.: End-to-end unsupervised deformable image registration with a convolutional neural network. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 204–212. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_24

    Chapter  Google Scholar 

  15. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  16. Wells, W.M., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1), 35–51 (1996)

    Article  Google Scholar 

  17. Wu, G., Kim, M., Wang, Q., Gao, Y., Liao, S., Shen, D.: Unsupervised deep feature learning for deformable registration of MR brain images. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 649–656. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_80

    Chapter  Google Scholar 

  18. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on CVPR, pp. 1492–1500 (2017)

    Google Scholar 

  19. Yan, P., Xu, S., Rastinehad, A.R., Wood, B.J.: Adversarial image registration with application for MR and trus image fusion. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 197–204. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_23

    Chapter  Google Scholar 

  20. Zhang, Y., Bi, J., Zhang, W., Du, H., Xu, Y.: Recent advances in registration methods for MRI-TRUS fusion image-guided interventions of prostate. Recent Patents Eng. 11(2), 115–124 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingkun Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, X. et al. (2021). Cross-Modal Attention for MRI and Ultrasound Volume Registration. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87202-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87201-4

  • Online ISBN: 978-3-030-87202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics