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Abstract. Prostate cancer biopsy benefits from accurate fusion of tran-
srectal ultrasound (TRUS) and magnetic resonance (MR) images. In the
past few years, convolutional neural networks (CNNs) have been proved
powerful in extracting image features crucial for image registration. How-
ever, challenging applications and recent advances in computer vision
suggest that CNNs are quite limited in its ability to understand spa-
tial correspondence between features, a task in which the self-attention
mechanism excels. This paper aims to develop a self-attention mecha-
nism specifically for cross-modal image registration. Our proposed cross-
modal attention block effectively maps each of the features in one volume
to all features in the corresponding volume. Our experimental results
demonstrate that a CNN network designed with the cross-modal atten-
tion block embedded outperforms an advanced CNN network 10 times
of its size. We also incorporated visualization techniques to improve the
interpretability of our network. The source code of our work is available
at https://github.com/DIAL-RPI/Attention-Reg.

Keywords: Self-attention · Image feature · Image registration · Multi-
modal · Prostate caner

1 Introduction

Image-guided interventional procedures often require registering multi-modal im-
ages to visualize and analyze complementary information. For example, prostate
cancer biopsy benefits from fusing transrectal ultrasound (TRUS) imaging with
magnetic resonance imaging (MRI) to optimize targeted biopsy. However, image
registration is a challenging task especially for multi-modal images. Traditional
multi-modal image registration relies on maximizing the mutual information be-
tween images [9,16], which performs poorly when the input images have complex
textural patterns, such as in the case of MRI and ultrasound registration. Feature
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Fig. 1. Overview of the proposed registration framework with cross-modal attention.

based methods compute the similarity between images by representing image ap-
pearances using features [6]. However, feature engineering limits the registration
performance on images in different contrasts, of complicated features, and/or
with strong noise.

In the past several years, deep learning has become a powerful tool for med-
ical image registration, starting from the early works of using neural networks
for similarity metric computation to direct transformation estimation [5,17]. For
example, Haskins et al. [4] developed a deep learning metric to measure the
similarity between MRI and TRUS volumes. The correspondences between the
volumes is established by optimizing the similarity iteratively, which can be com-
putationally intensive. de Vos et al. [14] proposed an end-to-end unsupervised
image registration method to train a spatial transform network by maximizing
the normalized cross correlation. Their method can directly estimate an image
transformation for registration. Balakrishnan et al. [1] further used mean squared
voxel-wise difference and local cross-correlation to train a registration network
to map image features to a spatial transformation. While the way of estimating
such an image transform underwent major changes, researchers also developed
novel ways to supervise the network learning process. Hu et al. [7] trained an
image registration framework in a weakly supervised fashion by minimizing the
differences between segmentation labels of the fixed image and a warped moving
image. Yan et al. [19] developed an adversarial registration framework using a
discriminator to supervise the registration estimator.

The aforementioned deep learning methods map the composite features from
input images directly into a spatial transformation to align them. So far, the suc-
cess comes from two primary sources. One is the ability of automatically learning
image representations through training a properly designed network. The other
is the capability of mapping complex patterns to an image transformation. The
current methods mix these two components together for image registration. How-
ever, converting image features to a spatial relationship is extremely challenging
and highly data-dependent, which is the bottleneck for further improvements of
the registration performance.

In this paper, we propose a novel cross-modal attention mechanism to ex-
plicitly use the spatial correspondence to improve the performance of neural
networks for image registration. By extending the non-local attention mecha-
nism [15] to an attention operation between two images, we designed a cross-
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Fig. 2. The proposed cross-modal attention block.

modal attention block that is specifically oriented towards registration tasks. The
attention block captures both local features and their global correspondence ef-
ficiently. Embedding this cross-modal attention block into an image registration
network, as shown in Fig. 1, improves deep learning based multi-modal image
registration, attaining both feature learning and correspondence establishment
explicitly and synergically.

By adding the cross-modal feature correspondence, the image registration
network can achieve better registration performance with a much simpler ar-
chitecture. To the best of our knowledge, this is the first work to embed the
non-local attention in the deep neural network for image registration.

In our experiments, we demonstrate the proposed method on the 3D MRI-
TRUS fusion task, which is a very challenging cross-modality image registration
problem. The proposed network was trained and tested on a dataset of 650 MRI
and TRUS volume pairs. The results show that our network significantly reduced
the registration error from 10.17 ± 5.75mm to 3.71 ± 1.99mm. The proposed
method also outperformed state-of-the-art methods with only 1/10 to 1/5 of the
number of parameters used by the competitors, as well as significantly reduced
the run time.

2 Method

In this image registration application, the MRI volume is considered to be the
fixed image, and the TRUS volume is the moving image. Our registration network
consists of three main parts, as shown in Fig. 1. The feature extractor uses
convolutional and max pooling layers to capture regional features, and down
samples the input volume. Then we use the proposed cross-modal attention
block to capture both local features and their global correspondence between
modalities. Finally, this information is fed to the deep registrator that further
fuses information from two modalities and infers the registration parameters.
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Fig. 3. Overview of the proposed network structure.

2.1 Cross-modal Attention

The proposed cross-modal attention block takes image features extracted from
MRI and TRUS volumes by the preceding convolutional layers. Unlike the non-
local block [15] computing self-attention on a single image, the proposed cross-
modal attention block aims to establish spatial correspondences between features
from two images in different modalities. Fig. 2 shows the structure of the pro-
posed cross-modal attention block. The two input feature maps of the block are
denoted as primary input P ∈ RLWH×32 and cross-modal input C ∈ RLWH×32,
respectively. LWH indicates the size of each 3D feature channel after flattening.
The block computes the cross-modal feature attention as

yi =

∑
∀j f(θ(ci)

Tφ(pj))g(pj)∑
∀j f(θ(ci)Tφ(pj))

, (1)

where ci and pj are features from C and P at location i and j, θ(·), φ(·) and
g(·) are all linear embeddings, and f(·) = exp(·). In Eq. 1, f(·) computes a
scalar representing correlations between the features of these two locations, ci
and pj . The result yi is a normalized summary of features on all locations of
P weighted by their correlations with the cross-modal feature on location i.
Thus, the matrix Y composed by yi integrated non-local information from P
to every position in C. Finally, the block’s output Z is the sum of Y and P
to allow efficient back-propagation. Therefore, the feature of a location k in Z
summarizes non-local correlation between the entire primary feature map and
location k of the cross modality feature map, as well as the information from
the original primary feature map at k.
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2.2 Feature Extraction and Deep Registration Modules

In the proposed network shown in Fig. 3, feature extraction modules precede
the cross-modal attention block to efficiently represent the input volumes. Each
feature extraction module consists of two sets of convolutional and maxpool-
ing layers. The deep registration module fuses the concatenated outputs of the
cross-modal attention blocks, and predicts the transformation for registration.
Other works have used very deep neural networks to automatically learn the
complex features of inputs [18]. However, since the cross-modal attention blocks
help determine the spatial correspondence between the two sets of volumes, our
registration module can afford to be light weighted. Thus, only three convolu-
tional layers are used to fuse the two feature maps. The final fully connected
layers convert the learnt spatial information into an estimated transformation.

2.3 Implementation Details

Due to the difficulty in representing the complex image appearances of MRI and
TRUS images, surface-based and surface to volume registration methods have
been investigated with considerable success [2, 13, 20]. That inspired us to re-
place the MRI volume with the prostate segmentation label volume in our work.
The network remains the same and we only need to set the fixed image input
as either MRI volume or segmentation label. The corresponding networks are
named as Attention-Reg (image) and Attention-Reg (label), respectively. One
advantage of using MRI prostate segmentation is that the binary representa-
tion is much more tolerant to image quality and device specificity than MRI
volume. Moreover, using segmentation as input can readily extend the proposed
method to other imaging modalities, like computed tomography. This implies
that while we trained our segmentation guided model on MRI and ultrasound,
it may potentially be used on any two modalities.

In this work, we focus on rigid transformation based registration. This de-
cision is determined by the better accessibility of ground truth labels for rigid
transformation, and the idea of focusing on network structure comparison only.
Rigid transformations in this work are performed with 4×4 matrices generated
from 6 degrees of freedom θ = {∆tx, ∆ty, ∆tz, ∆ax, ∆ay, ∆az}. These 6 trans-
formation parameters represent translations and rotations along the x, y, and z
directions, respectively. We supervise the network by calculating the MSE (Mean
Square Error) between the prediction and the ground truth parameters.

In our experiments, we included the recent methods of MSReg by Guo
et al. [3] and DVNet by Sun et al. [12] as benchmarks. We used Adam opti-
mizer [8] with maximum of 300 epochs to train all the networks including our
proposed Attention-Reg approach. We used a step learning rate scheduler for
MSReg training, with initial learning rate 5× 10−5 which then decays to 0.9 ev-
ery 5 epochs, as suggested in [3]. For DVNet, we used the same scheduler but with
initial learning rate adjusted to 1×10−3. The models were trained on a NVIDIA
DGX-1 deep learning server with batch size of 16 for MSReg, and 8 for our pro-
posed network. The testing phase and runtime benchmark were performed on a
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Table 1. Performance comparison between Attention-Reg and similarity-based itera-
tive registration methods.

Method Initialization Result SRE (mm)
Mutual Information [9]

8mm

8.96±1.28
SSD MIND [6] 6.42±2.86
Attention-Reg (img) 3.63±1.86
Attention-Reg (label) 3.54±1.91
Mutual Information [9]

16mm

10.07±1.40
SSD MIND [6] 6.62±2.96
Attention-Reg (img) 4.17±2.14
Attention-Reg (label) 4.06±2.10

work station equipped with NVIDIA GeForce RTX 2080 Ti and AMD Ryzen 9
3900X. Both the proposed and the MSReg methods were implemented in Python
using the open source PyTorch library [10]. Our implementation of the proposed
Attention-Reg is available at: https://github.com/DIAL-RPI/Attention-Reg.

3 Experiments and Results

3.1 Dataset and Preprocessing

In this work, we used 528 cases of MRI-TRUS volume pair for training, 66 cases
for validation, and 68 cases for testing. Each case contains a T2-weighted MRI
volume and a 3D ultrasound volume. Each MRI volume has 512×512×26 voxels
with 0.3mm resolution in all directions. The ultrasound is reconstructed from
an electro-magnetic tracked freehand 2D sweep of the prostate. The training set
was generated afresh for every training epoch to boost model robustness. On the
contrary, the validation set consists of 5 pre-generated initialization matrices for
each case, resulting in 330 total samples. The reason for not regenerating new
validation sets every epoch is to monitor the epoch-to-epoch performance in a
more stable manner. For testing, we generated 40 random initialization matrices
for each case. The same test set is used for all experiments.

We measured the image registration performance using surface registration
error (SRE). To accurately generate a dataset of with known SRE for training
and validation, we perturbed each ground truth transformation parameter ran-
domly within the range of 5mm of translation or 6 degrees of rotation, and then
scale the perturbation to a random SRE within the desired range.

3.2 Experimental Results

We first compared our approach to classical iterative registration methods. Ta-
ble 1 summarizes the comparison of our method and traditional iterative regis-
tration approaches, including mutual information [9] and MIND [6] based reg-
istration as in [5]. We tested our result on two sets of initial registrations. One
set is initialized at SRE=8mm, and the other set is initialized at SRE=16mm.

https://github.com/DIAL-RPI/Attention-Reg
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Table 2. Performance comparison between Attention-Reg, MSReg [3], and DVNet
[12]. Both parameter count and runtime were measured per stage. SRE values are in
mm.

Method Initial. Stage 1 Stage 2 #Parameters Runtime
DVNet [12]

[0,20mm]

4.77±3.17 - 5,275,832 3ms
MSReg [3] 4.75±2.63 4.04±2.30 16,106,076 6ms
Attention-Reg (image) 4.50±2.58 3.71±1.99 1,248,777 3ms
Attention-Reg (label) 4.44±2.32 3.60±2.01 1,248,777 3ms

Feature-Reg (image)
[0,20mm]

5.14±2.58 - 1,244,393 3ms
Feature-Reg (label) 5.22±2.81 - 1,244,393 3ms

The results of our proposed models are averaged from 6,800 test samples, with
68 cases of MRI-TRUS volume pair and 100 initialization matrices each. We
used this large test set to improve the robustness of the evaluation. Attention-
Reg (img) stands for the the registration result of our proposed network with
MRI volume as the input of fixed image, whereas Attention-Reg (label) uses
MRI prostate segmentation label as the fixed image. In both test scenarios, our
methods outperformed the traditional approaches significantly (p <0.001 under
t-test). It is also worth noting that when using MRI prostate segmentation as the
fixed image, the performance of our network is slightly improved with statistical
significance (p <0.001 under t-test).

Table 2 lists the results of our method and other end-to-end rigid registration
techniques, including MSReg by Guo et al. [3] and DVNet by Sun et al. [12].
The ResNeXt structure that Guo et al. adopted is one of the more advanced
variations of CNN [18], adding more weight to this comparison. The 2D CNN
network in DVNet [12] treats 3D volumes as patches of 2D images, a lighter
approach in handling 3D volume registration. We tested these networks on 2,720
testing samples, which consists of 68 cases with 40 initialization positions for
each case. To better compare our Attention-Reg with MSReg [3], which used
two consecutive networks to boost performance, we also trained our network
twice on two differently distributed training sets. The model for the 1st stage was
trained and tested on a generated dataset with initial SRE uniformly distributed
within the range of [0, 20mm], and the range for the 2nd stage was set to be
SRE ∈ [0, 8mm]. The trained networks were concatenated together to form a
two-stage registration network.

As shown in the top part of Table 2, our cross-modal attention network out-
performed MSReg in both registration stages. Furthermore, the better result
was achieved with only 1/10 the number of parameters, and half the runtime.
The significantly smaller model and simpler calculation demonstrate that the
proposed cross-modal attention block can efficiently capture key features of the
image registration task. Again, we observed that the performance of our net-
work with segmentation label as input was consistently better, with significantly
reduced SRE when compared to MSReg (p <0.001) in both stages.
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Fig. 4. Grad-CAM visualization of four pairs of feature maps resulting from the multi-
modal attention blocks of (top) Attention-Reg (image) and (bottom) Attention-Reg
(label). The image on the left and right in each pair are from the fixed and moving
images, respectively.

To demonstrate the contribution of the proposed cross-modal attention block,
we trained our Attention-Reg network without the attention block, i.e., directly
concatenating the outputs of feature extraction modules and feeding to the deep
registration module. The results are shown in the bottom half of Table 2, which
prove the importance of the proposed cross-modal attention block. Without the
attention module, the registration performance under both settings was signifi-
cantly reduced (p <0.001 with paired t-test). Also, note that without the atten-
tion block, using segmentation label as fixed image no longer has an advantage
over MRI volume. We speculate that this is also caused by the loss of attention
block, which establishes a sensible spatial correlation between the MRI segmen-
tation and the ultrasound volume, as shown in Fig. 4.

To help understand the function of cross-modal attention blocks, we employed
Grad-CAM [11] to visualize the output of the two multi-modal attention blocks.
Similar with Grad-CAM, we used the preceding CNN layer’s weight gradient to
scale the importance of each feature map channel, and thereby acquired a single
volume that represents the output of the multi-modal attention block. Fig. 4
shows the visualization result. It is apparent that both MRI and ultrasound
features are roughly the shape and location of the corresponding ultrasound
frame. This means that the network is focusing on the same region of information
in both volumes.

4 Conclusion

This paper introduced a novel attention mechanism for the task of medical image
registration. By comparing the proposed network with other classical methods
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and purely CNN-based networks up to ten times of its size, we demonstrated
the effectiveness of the new cross-modal attention block. To emphasize the im-
portance of prostate boundary, we also quantitatively evaluated the effect of
replacing an MRI volume with its segmentation mask as network input. Our
proposed methods have led to significant improvements in image registration
accuracy over the previous registration methods. Through feature map visual-
ization, we observed that the network indeed extracted meaningful features to
guide image registration. We expect to see our methods tested out in other med-
ical image registration settings in the future with such improvement in accuracy
and efficiency, and interpretability.
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