Skip to main content

A Neural Framework for Multi-variable Lesion Quantification Through B-Mode Style Transfer

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12906))

Abstract

In this paper, we present a scalable lesion-quantifying neural network based on b-mode-to-quantitative neural style transfer. Quantitative tissue characteristics have great potential in diagnostic ultrasound since pathological changes cause variations in biomechanical properties. The proposed system provides four clinically critical quantitative tissue images such as sound speed, attenuation coefficient, effective scatterer diameter, and effective scatterer concentration simultaneously by applying quantitative style information to structurally accurate b-mode images. The proposed system was evaluated through numerical simulation, and phantom and ex-vivo measurements. The numerical simulation shows that the proposed framework outperforms the baseline model as well as existing state-of-the-art methods while achieving significant parameter reduction per quantitative variables. In phantom and ex-vivo studies, the BQI-Net demonstrates that the proposed system achieves sufficient sensitivity and specificity in identifying and classifying cancerous lesions.

SH. Oh, and M.-G. Kim contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenleaf, J., Fatemi, M., Insana, M.: Selected methods for imaging elastic properties of biological tissues. Ann. Rev. Biomed. Eng. 5, 57–78 (2003)

    Article  Google Scholar 

  2. Zografos, G., et al.: Differentiation of birads-4 small breast lesions via multimodal ultrasound tomography. Eur. Radiol. 25, 410–418 (2015)

    Article  Google Scholar 

  3. Sanabria, S.J., Ozkan, E., Rominger, M., Goksel, O.: Spatial domain reconstruction for imaging speed-of-sound with pulse-echo ultrasound: simulation and in vivo study. Phys. Med. Biol. 63(21), 215015 (2018)

    Article  Google Scholar 

  4. Kim, M.-G., Oh, S., Kim, Y., Kwon, H., Bae, H.-M.: Robust single-probe quantitative ultrasonic imaging system with a target-aware deep neural network. IEEE Trans. Biomed. Eng. (2021). https://doi.org/10.1109/TBME.2021.3086856

    Article  Google Scholar 

  5. Rau, R., Unal, O., Schweizer, D., Vishnevskiy, V., Goksel, O.: Attenuation imaging with pulse-echo ultrasound based on an acoustic reflector. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 601–609. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_67

    Chapter  Google Scholar 

  6. Oelze, M.L., Mamou, J.: Review of quantitative ultrasound: envelope statistics and backscatter coefficient imaging and contributions to diagnostic ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(2), 336–351 (2016)

    Article  Google Scholar 

  7. Oh, S., Kim, M. -G., Kim, Y., Bae, H.-M.: A learned representation for multi variable ultrasound lesion quantification. In: ISBI, pp. 1177–1181. IEEE (2021)

    Google Scholar 

  8. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement networks. In: ICCV, pp. 1520–1529. IEEE (2017)

    Google Scholar 

  9. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  10. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., Kavukcuoglu, K.: Conditional image generation with pixelcnn decoders. In: NIPS (2016)

    Google Scholar 

  11. Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. arXiv preprint arXiv:1610.07629 (2016)

  12. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  14. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: ICCV, pp. 2337–2346. IEEE (2019)

    Google Scholar 

  15. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV, pp. 1501–1510. IEEE (2017)

    Google Scholar 

  16. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  17. Feigin, M., Freedman, D., Anthony, B.W.: A deep learning framework for single-sided sound speed inversion in medical ultrasound. IEEE Trans. Biomed. Eng. 67(4), 1142–1151 (2019)

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Mast, T.D.: Empirical relationships between acoustic parameters in human soft tissues. Acoust. Res. Lett. Online 1(37), 37–43 (2000)

    Article  Google Scholar 

  20. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2014)

    Google Scholar 

  21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Cabrelli, L.C., Grillo, F.W., Sampaio, D.R., Carneiro, A.A., Pavan, T.Z.: Acoustic and elastic properties of glycerol in oil-based gel phantoms. Ultrasound Med. Biol. 43(9), 2086–2094 (2017)

    Article  Google Scholar 

  23. Culjat, M.O., Goldenberg, D., Tewari, P., Singh, S.R.: A review of tissue substitutes for ultrasound imaging. Ultrasound Med. Biol. 36(6), 861–873 (2010)

    Article  Google Scholar 

  24. Anderson, J.J., et al.: Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms. Ultrason. Imaging 32(1), 48–64 (2010)

    Google Scholar 

  25. Goss, S.A., Johnstom, R.L., Dunn, F.: Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J. Acoust. Soc. Am. 64(2), 423–457 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon-Min Bae .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1057 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oh, S., Kim, MG., Kim, Y., Kwon, H., Bae, HM. (2021). A Neural Framework for Multi-variable Lesion Quantification Through B-Mode Style Transfer. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics