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Abstract. Image reconstruction from undersampled k-space data plays
an important role in accelerating the acquisition of MR data, and a lot of
deep learning-based methods have been exploited recently. Despite the
achieved inspiring results, the optimization of these methods commonly
relies on the fully-sampled reference data, which are time-consuming
and difficult to collect. To address this issue, we propose a novel self-
supervised learning method. Specifically, during model optimization, two
subsets are constructed by randomly selecting part of k-space data from
the undersampled data and then fed into two parallel reconstruction
networks to perform information recovery. T'wo reconstruction losses are
defined on all the scanned data points to enhance the network’s capa-
bility of recovering the frequency information. Meanwhile, to constrain
the learned unscanned data points of the network, a difference loss is
designed to enforce consistency between the two parallel networks. In
this way, the reconstruction model can be properly trained with only
the undersampled data. During the model evaluation, the undersam-
pled data are treated as the inputs and either of the two trained net-
works is expected to reconstruct the high-quality results. The proposed
method is flexible and can be employed in any existing deep learning-
based method. The effectiveness of the method is evaluated on an open
brain MRI dataset. Experimental results demonstrate that the proposed
self-supervised method can achieve competitive reconstruction perfor-
mance compared to the corresponding supervised learning method at
high acceleration rates (4 and 8). The code is publicly available at https:
//github.com/chenhu96/Self-Supervised-MRI-Reconstruction.
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1 Introduction

Magnetic resonance imaging (MRI) becomes an essential imaging modality in
clinical practices thanks to its excellent soft-tissue contrast. Nevertheless, the
inherently long scan time limits the wide employment of MRI in various situa-
tions. Acquiring MR data at sub-Nyquist rates followed by image reconstruction
is one of the common approaches for MRI acceleration. However, image recon-
struction is an ill-posed inverse problem, and high acceleration rates might lead
to noise amplification and residual artifacts in the images [10, 11]. Therefore,
recover high-quality MR images from undersampled data is a meaningful but
challenging task.

In the past few years, promising performance has been achieved in deploying
deep learning-based methods for MRI reconstruction [2,9]. These methods can
be broadly divided into two categories: data-driven networks and physics-based
unrolled networks. The former can be described as training pure deep neural net-
works to learn the nonlinear mapping between undersampled data / corrupted
images and fully-sampled data / uncorrupted images. Representative works in-
clude U-Net [7], GANCS [6], etc [8]. Unrolled networks construct network archi-
tectures by unfolding Compressive Sensing (CS) algorithms. Examples of this
category are ISTA-Net [14], ADMM-Net [13], MoDL [1], etc [4]. Regardless of
the approaches utilized, most existing deep learning-based methods rely on fully-
sampled data to supervise the optimization procedure. However, it is difficult to
obtain fully-sampled data in many scenarios due to physiological constraints or
physical constraints. Recently, a self-supervised learning method (self-supervised
learning via data undersampling, SSDU) was proposed specifically to solve the
issue [12], where the undersampled data is split into two disjoint sets. One is
treated as the input and the other is used to define the loss. Despite the impres-
sive reconstruction performance achieved, there are two important issues. First,
the two sets need to be split with caution. When the second set does not contain
enough data, the training process becomes unstable. Second, since no constraint
is imposed on the unscanned data points, there is no guarantee that the final
outputs are the expected high-quality images and high uncertainties exist.

To address the above issues, we propose a novel self-supervised learning
method with a parallel network training framework. Here, differently, we con-
struct two subsets by randomly selecting part of k-space data from the under-
sampled data, and then feed them into two parallel networks. Accordingly, two
reconstruction losses are defined using all of the undersampled data to facilitate
the networks’ capability of recovering the frequency information and ensure that
stable model optimization can be achieved. In addition, a difference loss is in-
troduced, which acts as an indirect and reasonable constraint on the unscanned
data points, between the outputs of the two networks to better aid in the subse-
quent high-quality image reconstruction during model testing. In the test phase,
the obtained undersampled data is fed to either of the two trained networks to
generate the high-quality results. Our major contributions can be summarized as
follows: 1) A parallel network training framework is constructed to accomplish
self-supervised image reconstruction model development through recovering un-
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dersampled data. 2) A novel difference loss on the unscanned data points of the
undersampled data is introduced with the parallel networks, which can effec-
tively constrain the solution space and improve the reconstruction performance.
3) Our method outperforms the existing state-of-the-art self-supervised learning
methods and achieves a reconstruction performance competitive to the corre-
sponding supervised learning method at high acceleration rates on an open IXI

brain scan MRI dataset.
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Fig. 1. The pipeline of our proposed framework for self-supervised MRI reconstruction.

2 Methods

Theoretically, the proposed method can be integrated with any existing deep
learning-based method. In this work, an unrolled network, ISTA-Net [14], is

utilized. The details are demonstrated as follows.
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2.1 Mathematical Model of CS-MRI Reconstruction

Mathematically, the CS-MRI reconstruction problem can be written as:
1
argmingllAX—YH% + AR(x) (1)

where x is the desired image, y is the undersampled k-space measurement, A
denotes the encoding matrix which include Fourier transform F and sampling
matrix P, R(x) denotes the utilized regularization, and X is the regularization
parameter. The purpose of MRI reconstruction is to recover the desired image
X from its measurement y.

2.2 Brief Recap of ISTA-Net

ISTA-Net is an unrolled version of the Iterative Shrinkage Thresholding Algo-
rithm (ISTA) [14], for which the regularization term in Eq. (1) is specified to be
the L1 regularization. ISTA-Net solves the inverse image reconstruction problem
in Eq. (1) by iterating the following two steps:

r®) = (k=1 _ HAT (Ax(k—l) _ y) (2)
x®) = F(soft(F(x®), 0)) (3)

where k is the iteration index, p is the step size, F(-) denotes a general form
of image transform, F () denotes the corresponding left inverse, soft(-) is the
soft thresholding operation, and 6 is the shrinkage threshold. F(-) and F (+) are
realized through neural networks and F (+) has a structure symmetric to that of
F(-). All free parameters and functions can be learned by end-to-end network
training. More details can be find in [14].

2.3 Proposed Self-Supervised Learning Method

Fig. 1 shows the overall pipeline of our proposed framework for self-supervised
MRI reconstruction. It includes a training phase of network optimization with
only undersampled data and a test phase of high-quality image reconstruction
from undersampled data.

In the training phase, two subsets are constructed by randomly selecting part
of k-space data from the undersampled data, and then fed into two parallel net-
works. In this work, the reconstruction network utilizes ISTA-Net™, which is an
enhanced version of ISTA-Net [14]. The architecture of ISTA-Net™ is showed in
Fig. 1, and the number of iterations is set to 9. As illustrated in Fig. 2, we con-
struct the two subsets by taking the intersections of the undersampling mask and
selection masks. The following strategies are adopted when choosing the selec-
tion masks: 1) The selection masks used by the two parallel networks should be
different. 2) The input to the networks should include most of the low-frequency
data points and part of the high-frequency data points. 3) We keep the numbers
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of the selected data points to be roughly half of the number of the undersam-
pled data points. Two masks which are similar to the undersampling pattern are
chosen as our selection masks. During network optimization, the undersampled
data are used to calculate the reconstruction loss. Furthermore, a difference loss
is defined to impose an indirect constraint to the unscanned data points, which
can ensure that the learned unscanned data points of the two parallel networks
are consistent. It is expected that the reconstructed images of the two networks
are roughly the same since they are basically recovering the same thing. Overall,
the network training process solves the following optimization problem:

! 1
arg I1[1111§||A1X1 -yil3+ 5||A2X2 —yoll3 + AR(x1) 4+ pR(x2) + vL(X1,X2) (4)

X1,X2

where y; and ys are the two subsets selected from the undersampled k-space
data, A; and As are the corresponding encoding matrices, and x; and x» are
the two estimations of the ground-truth image x which should be theoretically
consistent. R(-) is the regularization. £(-) denotes some similarity metrics. A, p,
and v are the regularization parameters.

In the test phase, high-quality MR images are generated by inputting the
raw undersampled data into either of the two trained networks. The network is
expected to be generalizable enough and to be able to self-speculate the missing
k-space data points.

ax

8x

Undersampled Data Mask_up Mask_down Net_input_up Net_input_down

Fig. 2. Construction of the two subsets. The autocalibrating signal (ACS) lines of the
undersampling mask and the selection mask are 24 and 16, respectively. 2D random
undersampling is utilized for both the undersampled data generation and the subsets
construction. “up” and “down” refer to the two parallel networks.
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2.4 Implementation Details

The loss function for model training is:

N N
(0~ 1 (Yt s+ Yt a'x
=1 1=1
N (5)
> L(ATX AT + Ao + %cw,ﬂ)

=1

where N is the number of the training cases, i denotes the i training case.
xr = f(yk,Ak;0k),k = 1,2, where f(-) denotes the reconstruction network
specified by the parameter set §. A = PF and A = (I—P)F refer to the scanned
k-space data points and the unknown / unscanned k-space data points which are
utilized to calculate the reconstruction loss and the difference loss, respectively.
Lcons denotes the constraint loss in [14], which is included to ensure the learned
transform F(-) satisfies the symmetry constraint FoF=1. «, B and v are the
regularization parameters. In our experiments, the loss metric £(-) is set to the
mean square error (MSE) loss, and o = § = = 0.01.

The proposed method is implemented in PyTorch. We use Xavier [3] to ini-
tialize the network parameters with a gain of 1.0. To train the parallel networks,
we use Adam optimization [5] with a learning rate warm up strategy (the learn-
ing rate is set to 0.0001 after 10 warm up epochs) and a batch size of 4. The
learning rate is automatically reduced by a constant factor when the perfor-
mance metric plateaus on the validation set. All experiments are conducted on
an Ubuntu 18.04 LTS (64-bit) operating system utilizing two NVIDIA RTX 2080
Ti GPUs (each with a memory of 11 GB).

3 Experiments and Results

Dataset. The open-source dataset, Information eXtraction from Images (IXI),
was collected from three hospitals in London. For each subject, T1, T2, PD-
weighted, MRA, and diffusion-weighted images are provided. More details in-
cluding scan parameters can be found on the official website®. Our experiments
are conducted with 2D slices extracted from the brain T1 MR images, and the
matrix size of each image is 256 x 256. The training set, validation set, and
test set for our experiments contain 850 slices, 250 slices, and 250 slices, re-
spectively. The image intensities are normalized to [0, 1] before the retrospective
undersampling process.

Comparison Methods. Our proposed method is compared to the following
reconstruction methods to evaluate the effectiveness: 1) U-Net-256: A U-Net
model trained in a supervised manner, where the number of channels of the

5 http://brain-development.org/ixi-dataset /
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Table 1. Quantitative analysis of the different methods at two acceleration rates (4
and 8).

PSNR SSIM

4x 8% 4x 8%
U-Net-256 {30.833|29.252|0.89184|0.85748
SSDU 35.908(32.469|0.95130(0.91531
Ours 38.575(33.255|0.97177|0.92709
Supervised|39.471{33.928(0.97843(0.93919

Methods

last encoding layer is 256. 2) SSDU: An ISTA-Net™ model trained in a self-
supervised manner as in [12]. In this paper, a slight difference in the network
loss calculation is made. To ensure stable network training, more k-space data
points (including partial network input) are utilized to calculate the loss. 3)
Supervised : An ISTA-Net™ model trained in a supervised manner.

Ground Truth U-Net-256 Supervised

4X

006

psnr: 36.816 psar: 37.627
ssim: 0.959 ssim: 0.968

8X

Fig. 3. Example reconstruction results of the different methods at two acceleration
rates (4 and 8) along with their corresponding error maps.

Table 1 lists the reconstruction results of the different methods. PSNR and
SSIM represent the peak signal-to-noise ratio and the structural similarity index
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measurement values. Compared to U-Net-256 and SSDU, our method achieves
significantly improved reconstruction performance at both acceleration rates.
Moreover, our method generates very competitive results which are close to
those generated by the corresponding supervised learning method that utilizes
the exact same network architecture (“Supervised” in Table 1). Example re-
construction results are plotted in Fig. 3. It can be observed that our method
recovers more detailed structural information compared to U-Net-256 and SSDU,
which suggests that our method can reconstruct MR images with better visual
qualities.

Ablation Analysis. To evaluate the effectiveness of the different components of
the proposed method, ablation studies are performed and the results are reported
in Table 2. It can be summarized that employing the defined reconstruction loss
(utilizing all the available undersampled data to calculate the reconstruction loss)
yields significantly better performance compared to SSDU, where only part of
the undersampled data is used to calculate the loss. Besides, as illustrated in
Table 2, with or without sharing the parameters of the parallel networks, the
reconstruction performance is consistently improved when the difference loss is
introduced, which suggests the effectiveness of the proposed difference loss for
the high-quality image reconstruction task.

Table 2. Ablation study results at two acceleration rates (4 and 8). “wo DiffLoss”
means without the difference loss. “share” represents sharing the parameters of the
two parallel networks.

PSNR SSIM
Methods 4% 8% 4x 8%
SSDU 35.908 [32.469 [0.95130 |0.91531
Self-supervised / wo DiffLoss 38.054 |33.077 (0.97036 [0.92439
Self-supervised / share 38.353 |33.216 (0.97086 [0.92681
Self-supervised / wo share (Ours)|38.575(33.255(0.97177|0.92709

4 Conclusion

A novel self-supervised learning method for MRI reconstruction is proposed that
can be employed by any existing deep learning-based reconstruction model. With
our method, neural networks obtain the ability to infer unknown frequency infor-
mation, and thus, high-quality MR images can be reconstructed without utilizing
any fully sampled reference data. Extensive experimental results confirm that
our method achieves competitive reconstruction performance when compared to
the corresponding supervised learning method at high acceleration rates.
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