Skip to main content

Interpretable Deep Learning for Multimodal Super-Resolution of Medical Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

In medical image acquisition, hardware limitations and scanning time constraints result in degraded images. Super-resolution (SR) is a post-processing approach aiming to reconstruct a high-resolution image from its low-resolution counterpart. Recent advances in medical image SR include the application of deep neural networks, which can improve image quality at a low computational cost. When dealing with medical data, accuracy is important for discovery and diagnosis, therefore, interpretable neural network models are of significant interest as they enable a theoretical study and increase trustworthiness needed in clinical practice. While several interpretable deep learning designs have been proposed to treat unimodal images, to the best of our knowledge, there is no multimodal SR approach applied for medical images. In this paper, we present an interpretable neural network model that exploits information from multiple modalities to super-resolve an image of a target modality. Experiments with simulated and real MRI data show the performance of the proposed approach in terms of numerical and visual results.

This work has been co-funded by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH-CREATE-INNOVATE (project code: T1EDK03895).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notation: Lower case letters are used for scalars, boldface lower case letters for vectors, boldface upper case letters for matrices and boldface upper case letters in math calligraphy for tensors.

  2. 2.

    http://lit.fe.uni-lj.si/tools.php?lang=eng.

References

  1. Adler, J., Öktem, O.: Learned primal-dual reconstruction. IEEE Trans. Med. Imag. 37(6), 1322–1332 (2018)

    Article  Google Scholar 

  2. Aubert-Broche, B., Griffin, M., Pike, G.B., Evans, A.C., Collins, D.L.: Twenty new digital brain phantoms for creation of validation image data bases. IEEE Trans. Med. Imag. 25(11), 1410–1416 (2006)

    Article  Google Scholar 

  3. Borgerding, M., Schniter, P., Rangan, S.: AMP-inspired deep networks for sparse linear inverse problems. IEEE Trans. Sig. Process. 65(16), 4293–4308 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems with a sparsity constrain. Commun. Pure Appl. Math. 57, 1413 (2004)

    Article  MATH  Google Scholar 

  5. Deng, X., Dragotti, P.L.: Deep coupled ISTA network for multi-modal image super-resolution. IEEE Trans. Image Process. 29, 1683–1698 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Greenspan, H.: Super-resolution in medical imaging. Comput. J. 52(1), 43–63 (2009)

    Article  Google Scholar 

  7. Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: Proceedings of the 27th International Conference on Machine Learning, pp. 399–406. ICML 2010, Omnipress, USA (2010)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Lesjak, Ž, et al.: A novel public MR image dataset of multiple sclerosis patients with lesion segmentations based on multi-rater consensus. Neuroinformatics 16(1), 51–63 (2018)

    Article  Google Scholar 

  10. Liu, D., Wang, Z., Wen, B., Yang, J., Han, W., Huang, T.S.: Robust single image super-resolution via deep networks with sparse prior. IEEE Trans. Image Process. 25(7), 3194–3207 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lucas, A., Iliadis, M., Molina, R., Katsaggelos, A.K.: Using deep neural networks for inverse problems in imaging: beyond analytical methods. IEEE Sig. Process. Mag. 35(1), 20–36 (2018)

    Article  Google Scholar 

  12. Mansoor, A., Vongkovit, T., Linguraru, M.G.: Adversarial approach to diagnostic quality volumetric image enhancement. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 353–356. IEEE (2018)

    Google Scholar 

  13. Marivani, I., Tsiligianni, E., Cornelis, B., Deligiannis, N.: Multimodal image super-resolution via Deep Unfolding with Side Information. In: European Signal Processing Conference (EUSIPCO) (2019)

    Google Scholar 

  14. Marivani, I., Tsiligianni, E., Cornelis, B., Deligiannis, N.: Multimodal deep unfolding for guided image super-resolution. IEEE Trans. Image Process. 29, 8443–8456 (2020)

    Article  MATH  Google Scholar 

  15. Monga, V., Li, Y., Eldar, Y.C.: Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing. arXiv preprint arXiv:1912.10557 (2019)

  16. Mota, J.F.C., Deligiannis, N., Rodrigues, M.R.D.: Compressed sensing with prior information: strategies, geometry, and bounds. IEEE Trans. Inf. Theory 63(7), 4472–4496 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica 5(4), 458–464 (2018)

    Article  Google Scholar 

  18. Papyan, V., Romano, Y., Elad, M.: Convolutional neural networks analyzed via convolutional sparse coding. J. Mach. Learn. Res. 18(1), 2887–2938 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imag. 38(1), 280–290 (2018)

    Article  Google Scholar 

  20. Ribes, A., Schmitt, F.: Linear inverse problems in imaging. IEEE Sig. Process. Mag. 25(4), 84–99 (2008)

    Article  Google Scholar 

  21. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imag. 37(2), 491–503 (2017)

    Article  Google Scholar 

  22. Sreter, H., Giryes, R.: Learned convolutional sparse coding. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2191–2195. IEEE (2018)

    Google Scholar 

  23. Tsiligianni, E., Deligiannis, N.: Deep coupled-representation learning for sparse linear inverse problems with side information. IEEE Sig. Process. Lett. 26, 1768 (2019)

    Article  Google Scholar 

  24. Xiang, L., et al.: Deep-learning-based multi-modal fusion for fast MR reconstruction. IEEE Trans. Biomed. Eng. 66(7), 2105–2114 (2018)

    Article  Google Scholar 

  25. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19, 2861–2873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, Y., Sun, J., Li, H., Xu, Z.: Deep ADMM-Net for compressive sensing MRI. In: Advances in Neural Information Processing Systems (NIPS), pp. 10–18 (2016)

    Google Scholar 

  27. Yedder, H.B., Cardoen, B., Hamarneh, G.: Deep learning for biomedical image reconstruction: a survey. Artif. Intell. Rev. 54, 1–37 (2020)

    Google Scholar 

  28. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010)

    Google Scholar 

  29. Zeng, K., Zheng, H., Cai, C., Yang, Y., Zhang, K., Chen, Z.: Simultaneous single-and multi-contrast super-resolution for brain MRI images based on a convolutional neural network. Comput. Biol. Med. 99, 133–141 (2018)

    Article  Google Scholar 

  30. Zhou, B., Zhou, S.K.: DuDoRNet: learning a dual-domain recurrent network for fast MRI reconstruction with deep T1 prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4273–4282 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evaggelia Tsiligianni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsiligianni, E., Zerva, M., Marivani, I., Deligiannis, N., Kondi, L. (2021). Interpretable Deep Learning for Multimodal Super-Resolution of Medical Images. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics