Skip to main content

Cardiac Transmembrane Potential Imaging with GCN Based Iterative Soft Threshold Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12906))

Abstract

Accurate reconstruction and imaging of cardiac transmembrane potential through body surface ECG signals can provide great help for the diagnosis of heart disease. In this paper, a cardiac transmembrane potential reconstruction method (GISTA-Net) based on graph convolutional neural network and iterative soft threshold algorithm is proposed. It fully combines the rigor of mathematical derivation of traditional iterative threshold shrinkage algorithm and the powerful expression ability of deep learning method, as well as the characterization ability of graph convolutional neural network for non-Euclidean space data. We used this algorithm to simulate ectopic pacing data and simulated myocardial infarction data. The experimental results show that this algorithm can not only accurately locate the ectopic pacing point, but also accurately reconstruct the edge details of myocardial infarction scar while graph convolution makes full use of the connection information between the nodes on the heart surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paul, T., Windhagen-Mahnert, B., Kriebel, T., et al.: Atrial reentrant tachycardia after surgery for congenital heart disease endocardial mapping and radiofrequency catheter ablation using a novel, noncontact mapping system. Circulation 103(18), 2266 (2001)

    Article  Google Scholar 

  2. Ramanathan, C., Ghanem, R.N., Jia, P., et al.: Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat. Med. 10, 422–428 (2004)

    Article  Google Scholar 

  3. Ghosh, S., Rudy, Y.: Application of L1-norm regularization to epicardial potential solution of the inverse electrocardiography problem. Ann. Biomed. Eng. 37(5), 902–912 (2009)

    Article  Google Scholar 

  4. Fang, L., Xu, J., Hu, H., et al.: Noninvasive imaging of epicardial and endocardial potentials with low rank and sparsity constraints. IEEE Trans. Biomed. Eng. 66(9), 2651–2662 (2019)

    Article  Google Scholar 

  5. Mu, L., Liu, H.: Noninvasive electrocardiographic imaging with low-rank and non-local total variation regularization. Pattern Recogn. Lett. 138, 106–114 (2020)

    Article  Google Scholar 

  6. Langer, M., Cloetens, P., Peyrin, F.: Fourier-wavelet regularization of phase retrieval in x-ray in-line phase tomography. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 26(8), 1876–1881 (2009)

    Article  MathSciNet  Google Scholar 

  7. Shou, G., Xia, L., Jiang, M.: Total variation regularization in electrocardiographic mapping. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds.) ICSEE/LSMS - 2010. LNCS, vol. 6330, pp. 51–59. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15615-1_7

    Chapter  Google Scholar 

  8. Bacoyannis, T., Krebs, J., Cedilnik, N., et al.: Deep learning formulation of ECGI for data-driven integration of spatiotemporal correlations and imaging information. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds.) FIMH 2019. LNCS, vol. 11504, pp. 20–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21949-9_3

    Chapter  Google Scholar 

  9. Jiang, X., Ghimire, S., Dhamala, J., et al.: Learning geometry-dependent and physics-based inverse image reconstruction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 487–496. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_47

    Chapter  Google Scholar 

  10. Zhang, J., Ghanem, B.: ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1828–1837 (2018)

    Google Scholar 

  11. Hammernik, K., Klatzer, T., Kobler, E., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Oosterom, A., Oostendorp, T.: ECGSIM: an interactive tool for studying the genesis of QRST waveforms. Heart 90(2), 165–168 (2004)

    Article  Google Scholar 

  14. Wang, L., Zhang, H., Wong, K.C.L., et al.: Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials. IEEE Trans. Biomed. Eng. 57(2), 296–315 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported in part by the National Key Technology Research and Development Program of China (No: 2017YFE0104000, 2016YFC1300302), and by the National Natural Science Foundation of China (No: U1809204, 61525106, 61701436).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mu, L., Liu, H. (2021). Cardiac Transmembrane Potential Imaging with GCN Based Iterative Soft Threshold Network. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics