Skip to main content

STRESS: Super-Resolution for Dynamic Fetal MRI Using Self-supervised Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Fetal motion is unpredictable and rapid on the scale of conventional MR scan times. Therefore, dynamic fetal MRI, which aims at capturing fetal motion and dynamics of fetal function, is limited to fast imaging techniques with compromises in image quality and resolution. Super-resolution for dynamic fetal MRI is still a challenge, especially when multi-oriented stacks of image slices for oversampling are not available and high temporal resolution for recording the dynamics of the fetus or placenta is desired. Further, fetal motion makes it difficult to acquire high-resolution images for supervised learning methods. To address this problem, in this work, we propose STRESS (Spatio-Temporal Resolution Enhancement with Simulated Scans), a self-supervised super-resolution framework for dynamic fetal MRI with interleaved slice acquisitions. Our proposed method simulates an interleaved slice acquisition along the high-resolution axis on the originally acquired data to generate pairs of low- and high-resolution images. Then, it trains a super-resolution network by exploiting both spatial and temporal correlations in the MR time series, which is used to enhance the resolution of the original data. Evaluations on both simulated and in utero data show that our proposed method outperforms other self-supervised super-resolution methods and improves image quality, which is beneficial to other downstream tasks and evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use x-axis here to keep the notation simple. In fact any axis within the x-y plane can be used.

  2. 2.

    https://github.com/daviddmc/STRESS.

References

  1. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3686–3693 (2014)

    Google Scholar 

  2. Diogi, M.C., et al.: Echo-planar flair sequence improves subplate visualization in fetal MRI of the brain. Radiology 292(1), 159–169 (2019)

    Article  Google Scholar 

  3. Dowling, J., et al.: Nonrigid correction of interleaving artefacts in pelvic MRI. In: Medical Imaging 2009: Image Processing, vol. 7259, p. 72592P. International Society for Optics and Photonics (2009)

    Google Scholar 

  4. Gholipour, A., et al.: Fetal MRI: a technical update with educational aspirations. Concepts Mag. Reson. Part A 43(6), 237–266 (2014)

    Article  Google Scholar 

  5. Gholipour, A., Estroff, J.A., Warfield, S.K.: Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Trans. Med. Imaging 29(10), 1739–1758 (2010)

    Article  Google Scholar 

  6. Gholipour, A., et al.: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 7(1), 1–13 (2017)

    Article  MathSciNet  Google Scholar 

  7. Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34(6), 910–914 (1995)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Jog, A., Carass, A., Prince, J.L.: Self super-resolution for magnetic resonance images. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 553–560. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_64

    Chapter  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  11. Kochunov, P., et al.: Fetal brain during a binge drinking episode: a dynamic susceptibility contrast MRI fetal brain perfusion study. Neuroreport 21(10), 716 (2010)

    Article  Google Scholar 

  12. Kuklisova-Murgasova, M., et al.: Distortion correction in fetal EPI using non-rigid registration with a Laplacian constraint. IEEE Trans. Med. Imaging 37(1), 12–19 (2017)

    Article  Google Scholar 

  13. Laine, S., Karras, T., Lehtinen, J., Aila, T.: High-quality self-supervised deep image denoising. arXiv preprint arXiv:1901.10277 (2019)

  14. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  15. Luo, J., et al.: In vivo quantification of placental insufficiency by bold MRI: a human study. Sci. Rep. 7(1), 1–10 (2017)

    Article  Google Scholar 

  16. Parker, D., Rotival, G., Laine, A., Razlighi, Q.R.: Retrospective detection of interleaved slice acquisition parameters from fMRI data. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 37–40. IEEE (2014)

    Google Scholar 

  17. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  18. Saleem, N.S.: Fetal MRI: an approach to practice: a review. J. Adv. Res. 5(5), 507–523 (2014)

    Article  Google Scholar 

  19. Shocher, A., Cohen, N., Irani, M.: “zero-shot” super-resolution using deep internal learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3118–3126 (2018)

    Google Scholar 

  20. Turk, E.A., et al.: Placental MRI: effect of maternal position and uterine contractions on placental bold MRI measurements. Placenta 95, 69–77 (2020)

    Article  Google Scholar 

  21. Uus, A.: Deformable slice-to-volume registration for motion correction of fetal body and placenta MRI. IEEE Trans. Med. Imaging 39(9), 2750–2759 (2020)

    Article  Google Scholar 

  22. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  23. Xu, J.: Fetal pose estimation in volumetric MRI using a 3D convolution neural network. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 403–410. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_44

    Chapter  Google Scholar 

  24. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

  25. Zhao, C., Dewey, B.E., Pham, D.L., Calabresi, P.A., Reich, D.S., Prince, J.L.: SMORE: a self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning. IEEE Trans. Med. Imaging 40, 805–817 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH U01HD087211, NIH R01EB01733 and NIH NIBIB NAC P41EB015902.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junshen Xu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 79 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, J., Abaci Turk, E., Grant, P.E., Golland, P., Adalsteinsson, E. (2021). STRESS: Super-Resolution for Dynamic Fetal MRI Using Self-supervised Learning. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12907. Springer, Cham. https://doi.org/10.1007/978-3-030-87234-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87234-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87233-5

  • Online ISBN: 978-3-030-87234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics