Skip to main content

Learning-Based Attenuation Quantification in Abdominal Ultrasound

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12907))

Abstract

The attenuation coefficient (AC) of tissue in medical ultrasound has great potential as a quantitative biomarker due to its high sensitivity to pathological properties. In particular, AC is emerging as a new quantitative biomarker for diagnosing and quantifying hepatic steatosis. In this paper, a learning-based technique to quantify AC from pulse-echo data obtained through a single convex probe is presented. In the proposed method, ROI adaptive transmit beam focusing (TxBF) and envelope detection schemes are employed to increase the estimation accuracy and noise resilience, respectively. In addition, the proposed network is designed to extract accurate AC of the target region considering attenuation/sound speed/scattering of the propagating waves in the vicinities of the target region. The accuracy of the proposed method is verified through simulation and phantom tests. In addition, clinical pilot studies show that the estimated liver AC values using the proposed method are correlated strongly with the fat fraction obtained from magnetic resonance imaging (\(R^2=0.89\), \(p<0.001\)). Such results indicate the clinical validity of the proposed learning-based AC estimation method for diagnosing hepatic steatosis.

M.-G. Kim and S. Oh—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Browning, J.D., et al.: Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40(6), 1387–1395 (2004)

    Article  Google Scholar 

  2. Kinner, S., Reeder, S.B., Yokoo, T.: Quantitative imaging biomarkers of NAFLD. Digest. Dis. Sci. 61(5), 1337–1347 (2016). https://doi.org/10.1007/s10620-016-4037-1

    Article  Google Scholar 

  3. McFarlin, B.L., Bigelow, T.A., Laybed, Y., O’Brien, W.D., Oelze, M.L., Abramowicz, J.S.: Ultrasonic attenuation estimation of the pregnant cervix: a preliminary report. Ultrasound Obstet. Gynecol. 36(2), 218–225 (2010)

    Article  Google Scholar 

  4. Karlas, T., et al.: Individual patient data me-ta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J. Hepatol. 66(5), 1022–1030 (2017)

    Article  Google Scholar 

  5. Samimi, K., Varghese, T.: Optimum diffraction-corrected frequency-shift estimator of the ultrasonic attenuation coefficient. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 63(5), 691–702 (2016)

    Article  Google Scholar 

  6. Coila, A.L., Lavarello, R.: Regularized spectral log difference technique for ultrasonic attenuation imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 65(3), 378–389 (2018)

    Article  Google Scholar 

  7. Rau, R., Unal, O., Schweizer, D., Vishnevskiy, V., Goksel, O.: Attenuation imaging with pulse-echo ultrasound based on an acoustic reflector. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 601–609. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_67

    Chapter  Google Scholar 

  8. Treeby, B.E., Cox, B.T.: K-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15(2), 021314 (2010)

    Google Scholar 

  9. Feigin, M., Freedman, D., Anthony, B.W.: A deep learning framework for single-sided sound speed inversion in medical ultrasound. IEEE Trans. Biomed. Eng. 67(4), 1142–1151 (2019)

    Article  Google Scholar 

  10. Oh, S., Kim, M.-G., Kim. Y., Bae, H.-M.: A learned representation for multi variable ultrasound lesion quantification. In: ISBI, pp. 1177–1181. IEEE (2021)

    Google Scholar 

  11. Kim, M.-G., Oh, S., Kim, Y., Kwon, H., Bae, H.-M.: Robust single-probe quantitative ultrasonic imaging system with a target-aware deep neural network. IEEE Trans. Biomed. Eng. (2021). https://doi.org/10.1109/TBME.2021.3086856

    Article  Google Scholar 

  12. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  14. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV, pp. 1501–1510. IEEE (2017)

    Google Scholar 

  15. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: PMLR, pp. 448–456 (2015)

    Google Scholar 

  16. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures. Neural Comput. 7(2), 219–269 (1995)

    Article  Google Scholar 

  17. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2014)

    Google Scholar 

  18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon-Min Bae .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3559 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, MG., Oh, S., Kim, Y., Kwon, H., Bae, HM. (2021). Learning-Based Attenuation Quantification in Abdominal Ultrasound. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12907. Springer, Cham. https://doi.org/10.1007/978-3-030-87234-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87234-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87233-5

  • Online ISBN: 978-3-030-87234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics