Skip to main content

Joint PVL Detection and Manual Ability Classification Using Semi-supervised Multi-task Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12907))

Abstract

Among symptoms of cerebral palsy (CP), the degree of hand function impairment in young children is hard to assess due to large inter-personal variability and differences in evaluators’ experience. To help design better treatment strategies, accurate identification and delineation of manual ability injury level is a major clinical concern. Periventricular leukomalacia (PVL), a form of brain lesion in periventriular white matter in premature infants, is a leading cause of CP and have clinical associations with motor function injuries. In this paper, we exploit the correlation between PVL lesion segmentation and manual ability classification (MAC) to improve the identification performance of both tasks for T2 FLAIR MRI scans. Particularly, we propose a semi-supervised multi-task learning framework to jointly learn from heterogeneous datasets. Two clinically related auxiliary tasks, lesion localization and ventricle segmentation, are also incorporated to improve the classification accuracy while requiring only a small amount of manual annotations. Using two datasets containing 24 labeled PVL samples and 87 labeled MAC samples, the proposed model significantly outperforms single-task methods, achieving a dice score of 0.607 for PVL lesion segmentation and 84.3% accuracy for manual ability classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arner, M., Eliasson, A.C., Nicklasson, S., Sommerstein, K., Hägglund, G.: Hand function in cerebral palsy. Report of 367 children in a population-based longitudinal health care program. J. Hand Surg. 33(8), 1337–1347 (2008)

    Google Scholar 

  2. Avants, B.B., Tustison, N.J., Stauffer, M., Song, G., Wu, B., Gee, J.C.: The insight toolkit image registration framework. Front. Neuroinform. 8, 44 (2014)

    Article  Google Scholar 

  3. Sainz de Cea, M.V., Diedrich, K., Bakalo, R., Ness, L., Richmond, D.: Multi-task learning for detection and classification of cancer in screening mammography. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 241–250. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_24

    Chapter  Google Scholar 

  4. Chen, C., Bai, W., Rueckert, D.: Multi-task learning for left atrial segmentation on GE-MRI. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 292–301. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_32

    Chapter  Google Scholar 

  5. Cheng, G., Cheng, J., Luo, M., He, L., Tian, Y., Wang, R.: Effective and efficient multitask learning for brain tumor segmentation. J. Real-Time Image Proc. 17(6), 1951–1960 (2020)

    Article  Google Scholar 

  6. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  7. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

    Chapter  Google Scholar 

  8. Eliasson, A.C., et al.: The manual ability classification system (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev. Med. Child Neurol. 48(7), 549–554 (2006)

    Article  Google Scholar 

  9. Franki, I., et al.: The relationship between neuroimaging and motor outcome in children with cerebral palsy: a systematic review-part a. Structural imaging. Res. Dev. Disabil. 100, 103606 (2020)

    Google Scholar 

  10. Ghafoorian, M., et al.: Small white matter lesion detection in cerebral small vessel disease. In: Medical Imaging 2015: Computer-Aided Diagnosis, vol. 9414, p. 941411. International Society for Optics and Photonics (2015)

    Google Scholar 

  11. Graham, H.K., et al.: Erratum: cerebral palsy. Nat. Rev. Dis. Primers. 2(1), 15082 (2016)

    Article  Google Scholar 

  12. Holmefur, M., et al.: Neuroradiology can predict the development of hand function in children with unilateral cerebral palsy. Neurorehabil. Neural Repair 27(1), 72–78 (2013)

    Article  Google Scholar 

  13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  14. Isensee, F., et al.: nnU-Net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

  15. Jiang, H., et al.: Specific white matter lesions related to motor dysfunction in spastic cerebral palsy: a meta-analysis of diffusion tensor imaging studies. J. Child Neurol. 35(2), 146–154 (2020)

    Article  Google Scholar 

  16. Klingels, K., et al.: Upper limb impairments and their impact on activity measures in children with unilateral cerebral palsy. Eur. J. Paediatr. Neurol. 16(5), 475–484 (2012)

    Article  Google Scholar 

  17. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3 (2013)

    Google Scholar 

  18. Liu, H., et al.: Treatment response prediction of rehabilitation program in children with cerebral palsy using radiomics strategy: protocol for a multicenter prospective cohort study in west China. Quant. Imaging Med. Surg. 9(8), 1402 (2019)

    Article  Google Scholar 

  19. Liu, M., Zhang, J., Adeli, E., Shen, D.: Deep multi-task multi-channel learning for joint classification and regression of brain status. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 3–11. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_1

    Chapter  Google Scholar 

  20. Mailleux, L., Franki, I., Emsell, L., Peedima, M.L., Fehrenbach, A., Feys, H., Ortibus, E.: The relationship between neuroimaging and motor outcome in children with cerebral palsy: a systematic review-part b diffusion imaging and tractography. Res. Dev. Disabil. 97, 103569 (2020)

    Article  Google Scholar 

  21. Mailleux, L., et al.: White matter characteristics of motor, sensory and interhemispheric tracts underlying impaired upper limb function in children with unilateral cerebral palsy. Brain Struct. Funct. 225(5), 1495–1509 (2020)

    Article  Google Scholar 

  22. Smith, S.M., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004)

    Article  Google Scholar 

  23. Suzuki, S., et al.: Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process. 30(1), 32–46 (1985)

    Article  Google Scholar 

  24. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  25. Wang, J., Huang, C., Wang, Z., Zhang, Y., Ding, Y., Xiu, J.: Anchor-based segmentation of periventricular white matter for neonatal HIE. IEEE Access 8, 73547–73557 (2020)

    Article  Google Scholar 

  26. Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  27. Zeng, C., Gu, L., Liu, Z., Zhao, S.: Review of deep learning approaches for the segmentation of multiple sclerosis lesions on brain MRI. Front. Neuroinform. 14, 55 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 81901732) and the Science and Technology Supporting Program of Guizhou Province (Grant No. qiankehezhicheng S[2020]2359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J., Hu, J., Li, Y., Liu, H., Li, Y. (2021). Joint PVL Detection and Manual Ability Classification Using Semi-supervised Multi-task Learning. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12907. Springer, Cham. https://doi.org/10.1007/978-3-030-87234-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87234-2_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87233-5

  • Online ISBN: 978-3-030-87234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics