Abstract
Among symptoms of cerebral palsy (CP), the degree of hand function impairment in young children is hard to assess due to large inter-personal variability and differences in evaluators’ experience. To help design better treatment strategies, accurate identification and delineation of manual ability injury level is a major clinical concern. Periventricular leukomalacia (PVL), a form of brain lesion in periventriular white matter in premature infants, is a leading cause of CP and have clinical associations with motor function injuries. In this paper, we exploit the correlation between PVL lesion segmentation and manual ability classification (MAC) to improve the identification performance of both tasks for T2 FLAIR MRI scans. Particularly, we propose a semi-supervised multi-task learning framework to jointly learn from heterogeneous datasets. Two clinically related auxiliary tasks, lesion localization and ventricle segmentation, are also incorporated to improve the classification accuracy while requiring only a small amount of manual annotations. Using two datasets containing 24 labeled PVL samples and 87 labeled MAC samples, the proposed model significantly outperforms single-task methods, achieving a dice score of 0.607 for PVL lesion segmentation and 84.3% accuracy for manual ability classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arner, M., Eliasson, A.C., Nicklasson, S., Sommerstein, K., Hägglund, G.: Hand function in cerebral palsy. Report of 367 children in a population-based longitudinal health care program. J. Hand Surg. 33(8), 1337–1347 (2008)
Avants, B.B., Tustison, N.J., Stauffer, M., Song, G., Wu, B., Gee, J.C.: The insight toolkit image registration framework. Front. Neuroinform. 8, 44 (2014)
Sainz de Cea, M.V., Diedrich, K., Bakalo, R., Ness, L., Richmond, D.: Multi-task learning for detection and classification of cancer in screening mammography. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 241–250. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_24
Chen, C., Bai, W., Rueckert, D.: Multi-task learning for left atrial segmentation on GE-MRI. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 292–301. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_32
Cheng, G., Cheng, J., Luo, M., He, L., Tian, Y., Wang, R.: Effective and efficient multitask learning for brain tumor segmentation. J. Real-Time Image Proc. 17(6), 1951–1960 (2020)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19
Eliasson, A.C., et al.: The manual ability classification system (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev. Med. Child Neurol. 48(7), 549–554 (2006)
Franki, I., et al.: The relationship between neuroimaging and motor outcome in children with cerebral palsy: a systematic review-part a. Structural imaging. Res. Dev. Disabil. 100, 103606 (2020)
Ghafoorian, M., et al.: Small white matter lesion detection in cerebral small vessel disease. In: Medical Imaging 2015: Computer-Aided Diagnosis, vol. 9414, p. 941411. International Society for Optics and Photonics (2015)
Graham, H.K., et al.: Erratum: cerebral palsy. Nat. Rev. Dis. Primers. 2(1), 15082 (2016)
Holmefur, M., et al.: Neuroradiology can predict the development of hand function in children with unilateral cerebral palsy. Neurorehabil. Neural Repair 27(1), 72–78 (2013)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)
Isensee, F., et al.: nnU-Net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)
Jiang, H., et al.: Specific white matter lesions related to motor dysfunction in spastic cerebral palsy: a meta-analysis of diffusion tensor imaging studies. J. Child Neurol. 35(2), 146–154 (2020)
Klingels, K., et al.: Upper limb impairments and their impact on activity measures in children with unilateral cerebral palsy. Eur. J. Paediatr. Neurol. 16(5), 475–484 (2012)
Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3 (2013)
Liu, H., et al.: Treatment response prediction of rehabilitation program in children with cerebral palsy using radiomics strategy: protocol for a multicenter prospective cohort study in west China. Quant. Imaging Med. Surg. 9(8), 1402 (2019)
Liu, M., Zhang, J., Adeli, E., Shen, D.: Deep multi-task multi-channel learning for joint classification and regression of brain status. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 3–11. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_1
Mailleux, L., Franki, I., Emsell, L., Peedima, M.L., Fehrenbach, A., Feys, H., Ortibus, E.: The relationship between neuroimaging and motor outcome in children with cerebral palsy: a systematic review-part b diffusion imaging and tractography. Res. Dev. Disabil. 97, 103569 (2020)
Mailleux, L., et al.: White matter characteristics of motor, sensory and interhemispheric tracts underlying impaired upper limb function in children with unilateral cerebral palsy. Brain Struct. Funct. 225(5), 1495–1509 (2020)
Smith, S.M., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004)
Suzuki, S., et al.: Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process. 30(1), 32–46 (1985)
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)
Wang, J., Huang, C., Wang, Z., Zhang, Y., Ding, Y., Xiu, J.: Anchor-based segmentation of periventricular white matter for neonatal HIE. IEEE Access 8, 73547–73557 (2020)
Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)
Zeng, C., Gu, L., Liu, Z., Zhao, S.: Review of deep learning approaches for the segmentation of multiple sclerosis lesions on brain MRI. Front. Neuroinform. 14, 55 (2020)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 81901732) and the Science and Technology Supporting Program of Guizhou Province (Grant No. qiankehezhicheng S[2020]2359).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, J., Hu, J., Li, Y., Liu, H., Li, Y. (2021). Joint PVL Detection and Manual Ability Classification Using Semi-supervised Multi-task Learning. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12907. Springer, Cham. https://doi.org/10.1007/978-3-030-87234-2_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-87234-2_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87233-5
Online ISBN: 978-3-030-87234-2
eBook Packages: Computer ScienceComputer Science (R0)