Skip to main content

Highly Reproducible Whole Brain Parcellation in Individuals via Voxel Annotation with Fiber Clusters

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12907))

  • 7526 Accesses

Abstract

A central goal in systems neuroscience is to parcellate the brain into discrete units that are neurobiologically coherent. Here, we propose a strategy for consistent whole-brain parcellation of white matter (WM) and gray matter (GM) in individuals. We parcellate the brain into coherent parcels using non-negative matrix factorization based on voxel annotation using fiber clusters. Tractography is performed using an algorithm that mitigates gyral bias, allowing full gyral and sulcal coverage for reliable parcellation of the cortical ribbon. Experimental results indicate that parcellation using our approach is highly reproducible with 100% test-retest parcel identification rate and is highly consistent with significantly lower inter-subject variability than FreeSurfer parcellation. This implies that reproducible parcellation can be obtained for subject-specific investigation of brain structure and function.

This work was supported in part by United States National Institutes of Health (NIH) grants EB008374, MH125479, and EB006733.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 21 September 2021

    “This work was supported in part by United States National Institutes of Health (NIH) grants EB008374, MH125479, and EB006733.”

Notes

  1. 1.

    http://spams-devel.gforge.inria.fr.

References

  1. Arslan, S., Rueckert, D.: Multi-level parcellation of the cerebral cortex using resting-state fMRI. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 47–54. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_6

    Chapter  Google Scholar 

  2. Bloy, L., Ingalhalikar, M., Eavani, H., Schultz, R.T., Roberts, T.P.L., Verma, R.: White matter atlas generation using HARDI based automated parcellation. NeuroImage 59(4), 4055–4063 (2012)

    Article  Google Scholar 

  3. Destrieux, C., Fischl, B., Dale, A.M., Halgren, E.: A Sulcal depth-based anatomical parcellation of the cerebral cortex. NeuroImage 47, S151 (2009)

    Article  Google Scholar 

  4. Schiffler, P., Tenberge, J.G., Wiendl, H., Meuth, S.G.: Cortex parcellation associated whole white matter parcellation in individual subjects. Front. Hum. Neurosci. 11, 352 (2017)

    Article  Google Scholar 

  5. Fischl, B., et al.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3), 341–355 (2002)

    Article  Google Scholar 

  6. Wakana, S., Jiang, H., Nagae-Poetscher, L.M., van Zijl, P.C.M., Mori, S.: Fiber tract-based atlas of human white matter anatomy. Radiology 230(1), 77–87 (2004)

    Article  Google Scholar 

  7. Mori, S., et al.: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage 40(2), 570–582 (2008)

    Article  Google Scholar 

  8. Atkinson, A.P., Vuong, Q.C., Smithson, H.E.: Modulation of the face- and body-selective visual regions by the motion and emotion of point-light face and body stimuli. NeuroImage 59(2), 1700–1712 (2012)

    Article  Google Scholar 

  9. Rohlfing, T.: Incorrect ICBM-DTI-81 atlas orientation and white matter labels. Front. Neurosci. 7, 4 (2013)

    Article  Google Scholar 

  10. Xu, J., et al.: Tractography-based parcellation of the human middle temporal gyrus. Sci. Rep. 5, 18883 (2015)

    Article  Google Scholar 

  11. Li, H., et al.: ATPP: a pipeline for automatic Tractography-Based brain parcellation. Front. Neuroinform. 11, 35 (2017)

    Article  MathSciNet  Google Scholar 

  12. López-López, N., Vázquez, A., Poupon, C., Mangin, J., Guevara, P.: Cortical surface parcellation based on intra-subject white matter fiber clustering. In: 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 1–6, November 2019

    Google Scholar 

  13. López-López, N., et al.: From coarse to Fine-Grained parcellation of the cortical surface using a Fiber-Bundle atlas. Front. Neuroinform. 14, 32 (2020)

    Article  Google Scholar 

  14. Moreno-Dominguez, D., Anwander, A., Knösche, T.R.: A hierarchical method for whole-brain connectivity-based parcellation: whole-Brain Connectivity-Based parcellation. Hum. Brain Mapp. 35(10), 5000–5025 (2014)

    Article  Google Scholar 

  15. Lefranc, S., et al.: Groupwise connectivity-based parcellation of the whole human cortical surface using watershed-driven dimension reduction. Med. Image Anal. 30, 11–29 (2016)

    Article  Google Scholar 

  16. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3), 968–980 (2006)

    Article  Google Scholar 

  17. Destrieux, C., Fischl, B., Dale, A., Halgren, E.: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53(1), 1–15 (2010)

    Article  Google Scholar 

  18. Sotiropoulos, S.N., Zalesky, A.: Building connectomes using diffusion MRI: why, how and but. NMR Biomed. 32(4), e3752 (2019)

    Google Scholar 

  19. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K.: WU-Minn HCP consortium: The WU-Minn human connectome project: an overview. NeuroImage 80, 62–79 (2013)

    Article  Google Scholar 

  20. Sotiropoulos, S.N., Jbabdi, S., Andersson, J.L., Woolrich, M.W., Ugurbil, K., Behrens, T.E.J.: RubiX: combining spatial resolutions for Bayesian inference of crossing fibers in diffusion MRI. IEEE Trans. Med. Imaging 32(6), 969–982 (2013)

    Article  Google Scholar 

  21. Glasser, M.F., et al.: The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013)

    Article  Google Scholar 

  22. Wu, Y., Hong, Y., Feng, Y., Shen, D., Yap, P.T.: Mitigating gyral bias in cortical tractography via asymmetric fiber orientation distributions. Med. Image Anal. 59, 101543 (2020)

    Google Scholar 

  23. Chung, M.K., Adluru, N., Lee, J.E., Lazar, M., Lainhart, J.E., Alexander, A.L.: Cosine series representation of 3D curves and its application to white matter fiber bundles in diffusion tensor imaging. Stat. Interface 3(1), 69–80 (2010)

    Article  MathSciNet  Google Scholar 

  24. Park, H.S., Jun, C.H.: A simple and fast algorithm for k-medoids clustering. Expert Syst. Appl. 36(2, Part 2), 3336–3341 (2009)

    Google Scholar 

  25. Wu, Y., Hong, Y., Ahmad, S., Lin, W., Shen, D., Yap, P.-T.: Tract dictionary learning for fast and robust recognition of fiber bundles. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 251–259. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_25

    Chapter  Google Scholar 

  26. Kriegel, H.P., Kroger, P., Schubert, E., Zimek, A.: Interpreting and unifying outlier scores. In: Proceedings of the 2011 SIAM International Conference on Data Mining. Proceedings, pp. 13–24. Society for Industrial and Applied Mathematics, April 2011

    Google Scholar 

  27. O’Donnell, L.J., et al.: Automated white matter fiber tract identification in patients with brain tumors. NeuroImage. Clinical 13, 138–153 (2017)

    Article  Google Scholar 

  28. Zhang, F., Wu, Y., Norton, I., Rigolo, L., Rathi, Y., Makris, N., O’Donnell, L.J.: An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan. NeuroImage 179, 429–447 (2018)

    Google Scholar 

  29. Fürböck, C.: Non-negative matrix factorization as a tool for fMRI analysis of dynamicity and individuality of functional networks (2020)

    Google Scholar 

  30. Varikuti, D.P., et al.: Evaluation of non-negative matrix factorization of grey matter in age prediction. NeuroImage 173, 394–410 (2018)

    Article  Google Scholar 

  31. Thompson, E., et al.: Non-negative data-driven mapping of structural connections with application to the neonatal brain. NeuroImage 222, 117273 (2020)

    Google Scholar 

  32. Eickhoff, S.B., Yeo, B.T.T., Genon, S.: Imaging-based parcellations of the human brain. Nature reviews. Neuroscience 19(11), 672–686 (2018)

    Google Scholar 

  33. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. JMLR 5, 1457–1469 (2004)

    Google Scholar 

  34. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. JMLR 11(1) (2010)

    Google Scholar 

  35. Boutsidis, C., Gallopoulos, E.: SVD based initialization: a head start for nonnegative matrix factorization. Pattern Recogn. 41(4), 1350–1362 (2008)

    Article  Google Scholar 

  36. Arslan, S., Ktena, S.I., Makropoulos, A., Robinson, E.C., Rueckert, D., Parisot, S.: Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex. NeuroImage 170, 5–30 (2018)

    Article  Google Scholar 

  37. Bastiani, M., Shah, N.J., Goebel, R., Roebroeck, A.: Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm. NeuroImage 62(3), 1732–1749 (2012)

    Google Scholar 

  38. Glasser, M.F., Van Essen, D.C.: Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci. Official J. Soc. Neurosci. 31(32), 11597–11616 (2011)

    Article  Google Scholar 

  39. Wassermann, D., et al.: The white matter query language: a novel approach for describing human white matter anatomy. Brain Struct. Funct. 221(9), 4705–4721 (2016). https://doi.org/10.1007/s00429-015-1179-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pew-Thian Yap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y., Ahmad, S., Yap, PT. (2021). Highly Reproducible Whole Brain Parcellation in Individuals via Voxel Annotation with Fiber Clusters. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12907. Springer, Cham. https://doi.org/10.1007/978-3-030-87234-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87234-2_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87233-5

  • Online ISBN: 978-3-030-87234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics