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Abstract. Weak supervision learning on classification labels has demon-
strated high performance in various tasks, while a few pixel-level fine
annotations are also affordable. Naturally a question comes to us that
whether the combination of pixel-level (e.g., segmentation) and image
level (e.g., classification) annotation can introduce further improvement.
However in computational pathology this is a difficult task for this reason:
High resolution of whole slide images makes it difficult to do end-to-end
classification model training, which is challenging to research of weak
or hybrid supervision learning in the past. To handle this problem, we
propose a hybrid supervision learning framework for this kind of high res-
olution images with sufficient image-level coarse annotations and a few
pixel-level fine labels. This framework, when applied in training patch
model, can carefully make use of coarse image-level labels to refine gener-
ated pixel-level pseudo labels. Complete strategy is proposed to suppress
pixel-level false positives and false negatives. A large hybrid annotated
dataset is used to evaluate the effectiveness of hybrid supervision learn-
ing. By extracting pixel-level pseudo labels in initially image-level labeled
samples, we achieve 5.2% higher specificity than purely training on ex-
isting labels while retaining 100% sensitivity, in the task of image-level
classification to be positive or negative.

Keywords: Computational pathology · Hybrid & Weak supervision learn-
ing.
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1 Introduction

Hybrid supervision learning on various levels of annotations has shown its ef-
fectiveness in various machine learning applications [12,11,8] . However, we find
those tasks in computational pathology is more challenging as high resolution (
over 100,000 × 100,000 pixels ) of whole slide images makes it difficult to con-
duct end-to-end training of deep learning models, which is challenging to perform
weak or hybrid supervision learning research in the past [12,11,16,4,17,3,19].

To handle aforementioned challenges, a novel hybrid supervision learning
framework is proposed for whole slide images classification to distinguish positive
or negative. Due to high resolution we can only train deep learning model on
patches, and propose a well-designed strategy to modify pixel-level pseudo labels
on patches, according to image-level labels: A positive image is guaranteed to
contain at least one positive patch, while a negative image shall be entirely pixel-
wisely negative. Secondly pixel-level errors, false negatives and false positives, are
gathered during pseudo labels generation. We perform re-weighting on pixel-level
pseudo labels of patches from positive images, converting false negatives to true
positives and false positives. We use hard negatives patches from negative images
with a higher sampling ratio to train model, to further convert false positives
to true negatives. Because noise tolerant deep learning model can discriminate
a pattern as negative if during training it is mostly labeled as negative. As for
the few pixel-level annotations, we use them to initialize pre-trained model and
to mix a constant ratio in each training batch with pixel-level pseudo labels
to regularize training. With such strategy, without end-to-end training, we can
make best use of image-level labels, pixel-level fine-grained labels and pseudo
labels on unlabeled areas.

The main contributions of our hybrid supervision learning framework is to
utilize both the limited amount of pixel-level annotations and the large num-
ber of image-level labels. Without end-to-end image-level training, image-level
labels are used to refine pseudo labels on the entire training dataset, with well-
designed strategy to control false positives and false negatives. We evaluated the
framework on a large whole slide images dataset of histopathology. According
to experiments results, the hybrid supervision learning shows specificity 8.92%
better than image-level training and 5.2% better than pixel-level training, while
retaining 100% sensitivity.

2 Related work

For hybrid supervision learning: In most medical image tasks, hybrid supervision
is a common data situation, with large amount of clinical reports and small group
of segmentation annotations shown in Fig. 1. However focus was mostly given to
semi and weak supervision learning [24,7,5,10,22], defined on single format then
to make use of unlabeled images. There exists some achievements related to our
framework[12,11,8]. Our framework is different from theirs because end-to-end
classification training with entire image input is difficult in whole slide images.
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Fig. 1. Illustration of hybrid supervision data, containing 2 types of label. The first
expensive and rare type is pixel-level fine-grained labels, contoured by green lines. The
second type is image-level labeled images. The rest two images are image-level positive
and negative.

Instead only patches are involved in our total pipeline, image-level labels are not
directly related to loss calculation. As for computational pathology: Usually the
size of one whole slide image is 100,000 × 100,000 pixels, which is too big to
run directly on GPU, therefore most of previous contributions process images
in a two-stage manner [18,6,20,13,1,21,25,9]. In the first stage, discriminative
patches are extracted from whole slide image by specific patch models, in the
second stage a whole slide image classifier is trained by the selected patches from
first stage.

3 Hybrid supervision learning for whole slide image
classification

The main objective of hybrid supervision learning is to use image-level labels to
refine pixel-level pseudo labels on patches, without the entire huge image input.
Pipeline is shown in Fig. 2 and Algorithm. 1, which involves two stages: patch
segmentation, whole slide image classification.

A clinically effective system can tolerate false positives for further recheck
by pathologists, while false negatives are vital faults for patients. Thus we need
to locate the positive patterns in positive images as much as possible, while pre-
cluding more negative images. Our goal is to maintaining 100% sensitivity and
pursue higher specificity to reduce workloads. Under this consideration, com-
paring positive images and negative images, patterns that only exist in positive
images shall all be suspicious and at least one patch is responsible for image-
level positive diagnosis. Also, negative patterns that exist in negative images,
can certainly be regarded as true negative patterns, and positive predictions in
negative images can be regarded as hard negative patches. At the same time, it
is the fact that collecting negative images is much easier than positive images.
With sufficient suppression of various hard negative patches, we give a positive
growing tendency to patterns in positive images. Only the confidence of those
true positive patterns, not covered by negative patches, will be able to gradually
grow up and reach 1.0 eventually. Those noisy false positive introduced by grow-
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Algorithm 1: Pipeline of hybrid supervision learning.

Data:
yp: pixel-level fine-grained label from pathologists.
ŷp, ˆyp+, ˆyp−: pixel-level pseudo label, from positive and negative images,
created by models and image-level labels guided re-weighting.
yi: image-level label from clinical reports.
θ1: patch segmentation model initially trained by yp, outputs the probability
that each pixel of input patch is positive.
θ2: whole slide image classifier, outputs the probability that input whole slide
image is positive.
I: high resolution whole slide image.
x: image patches.
T : patch removing threshold.
V : re-weighting constant.
R: sampling ratio of yp, ˆyp+ and ˆyp− .
K: select top K patches as input to train whole slide image classifier.
while the model do not converge do

Stage 1: patch segmentation ;

E-step: ŷp ← P (yp
∣∣x, θ1) ;

Remove those patch x whose maximum pixel-level ŷp in this patch is less
than T ;

if yi == 1 then
ˆyp+ ← ŷp × V (pseudo labels);
ˆyp+ ← 1.0 if ˆyp+ >1.0 (clip within 1.0, to remain true positive);
ˆyp+ ← 0.0 if ˆyp+ <0.01 (clip to 0.0 if lower than 0.01, to remain true
negative which was slightly scaled up by V );

else
ˆyp− ← 0 (hard negative labels);

M-step: Retrain patch segmentation model θ1 at proper sampling ratio
of R in each training batch, and by pixel-level soft label cross entropy
loss = - 1

N

∑
N

∑
y=yp∪ ˆyp+∪ ˆyp−

y × logP (yp
∣∣x, θ1) + (1.0− y)× log(1.0− P (yp

∣∣x, θ1)) ;

Stage 2: whole slide image classification ;
Select top K patches for each whole slide image according to pixel-level
maximum P (yp

∣∣x, θ1);

P (yi
∣∣I, θ2) = 1

K

∑
K
P (yi

∣∣x, θ2)
Train classification model θ2 by Loss =
- 1
N

∑
N
yi × logP (yi

∣∣I, θ2) + (1.0− yi)× log(1.0− P (yi
∣∣I, θ2))

Convergence criteria: For each round of stage1, perform stage2
training. Select the round whose stage2 training loss is the lowest, which
means the top K patches selected in that round by stage1 is the optimal
to fit image-level annotations.

ing tendency will be suppressed by various hard negative patches and higher
sampling ratio during deep learning model training.
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Fig. 2. The overall pipeline of our hybrid supervision learning for whole slide image.
The image-level label guided pixel-level pseudo label generation is iterated in this
manner. The gray scale map is the predicted probability map of patch model.

As for pixel-level fine-grained labels yp, the best performance is certain if we
perform all the pixel-level fine-grained labels for all the positive images, however
with limited budget we could just afford a few, whose quantity is significantly
smaller than the image-level labels. To involve pixel-level fine-grained labels yp
into training, firstly it is used to initialize a pre-trained model θ1, to minimize
false positives and false negatives at the beginning. Secondly it consists of a large
ratio in each training batch.

To implement our intuition, shown in Fig. 2, we separate large size of whole
slide images into patches, then develop an Expectation-Maximization (EM)-like
method to make full use of three types of annotation: image-level labels yi,
pixel-level fine-grained labels yp and pixel-level pseudo labels ŷp. In the E-step,
pixel-level pseudo labels ŷp are firstly created from segmentation confidence map
of patches from both positive and negative images. We remove all the patches
from both positive and negative images whose maximum pixel-level positive
confidence is less than a threshold T , to reduce the number of training patches.
Provided with image-level labels, we obtain hard negative patches ˆyp− from
negative images and noisy pseudo labeled positive patches from positive images.
Then we multiply a weight V (V > 1) on noisy pseudo labels in positive patches
and clipped withing 1.0, assigning them as ˆyp+, which transforms false negatives
to true positives and false positives, while keeping true positives as the same.
In the M-step, patch segmentation model is then trained on a sampling ratio of
pixel-level fine-grained labels yp, pseudo labeled positive patches ˆyp+ and hard
negative patches ˆyp−. For sampling ratio of yp, ˆyp+ and ˆyp− in each training
batch, hard negative patches ˆyp− shall be much more than pseudo labeled posi-
tive patches ˆyp+ so that if one pattern is both labeled as negative in hard negative
patches and positive in pseudo labeled patches, model can still regard such pat-
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tern as negative for much higher sampling ratio, which transforms false positives
to true negatives. Only those patterns not suppressed by negative patches are
possible to be eventually discriminated as positive by models. Such procedure
is iterated for several rounds and we evaluate sensitivity and specificity for each
to decide when to stop. Loss function in patch segmentation stage is pixel-level
soft-label cross entropy loss to deal with both soft pseudo and fine-grained labels.
During whole slide image classification stage, for each super size whole slide im-
age, top K patches with maximum pixel-level probability are the input to image
classifier θ2. Average probability is the final image-level confidence to calculate
loss with image-level labels. Stage2 training also decides the convergence crite-
ria. We perform stage2 training for each round of stage1 and select that round
whose stage2 training loss is the lowest. That means the top K patches selected
in this round by stage1 is the optimal to fit image-level annotations in stage2.

4 Experiments

4.1 Experimental setting

To verify the effectiveness of hybrid supervision learning,we design three exper-
iments of different supervision for comparison: image-level, pixel-level and
hybrid. Image-level experiment is applied with source code from Campanella
et al [1], whose method relies only on image-level labels and searches top K
responsible patches for image-level labels. Patch classification model predicts
every patch’s confidence to be positive, then top K patches are further trained
by image-level labels. It is K = 1 in the released code [1]. Pixel-level ex-
periment uses all of existing pixel-level fine-grained labels to train patch seg-
mentation model and image-level labels to train whole slide image classification
model, without extracting hidden pixel-level pseudo labels. We modified code
from Khened et al [9] as our pixel-level baseline. Hybrid experiment makes
use of image-level labels, pixel-level fine-grained labels, and pseudo labels which
are generated from the first two, as described above. We use normal classifica-
tion task’s evaluation metrics to evaluate the performance including Sensitivity,
Specificity, ROC curve and AUC. Higher specificity while retaining 100% sensi-
tivity is our eventual preference.

4.2 Implementation details

Deep learning algorithms are developed by Pytorch1.0 [15] along with Openslide
[2]. Otsu’s [14] method is performed to quickly extract valid patches that contain
tissue. DLA34up and DLA34 [23] are the patch segmentation and whole slide
image classification models θ1, θ2 . Re-weighting constant is V = 4.0 for all the
experiments. This value only influences the training time, the lower V is, the
longer time it will take. V bigger than 4.0 shows no significant improvement in
speed. The pixel-wise maximum confidence patch selection threshold T is 0.4.
Higher threshold T can exclude some positive images, thus degrades sensitivity.
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Lower threshold T involves too much patches during training, leading to longer
convergence time but nearly the same final performance. Patch size for both of
patch segmentation and whole slide image classification is H = 512, W = 512,
overlapped 128. For classification top K patches, here we set K as 16. During
patch segmentation model training, R, sampling ratio of pixel-level fine-grained
labels yp, pseudo labels ˆyp+ and hard negative patches ˆyp− is 2:1:7, to allow hard
negative patches to overwhelm wrong patterns in noisy positive pseudo labels
and keep pixel-level fine-grained labels participating in training procedure. For
multi-round iteration, patch model initializes the weights from previous round,
not from scratch. For whole slide image classifier, sampling ratio of positive
and negative images is 1:1. Finally, the framework iterates to round 2 during
experiments. During training each round, patch model is trained 30 epochs while
whole slide image classifier is trained 15 epochs.

Table 1. Data distribution and train/test separation of gastric cancer dataset.

Pixel-level Images Images Total Total
Distribution Train Train Test Images Patients

Positive 200 patches 585 499 1,084 724
Negative 0 4,096 5,714 9,810 5941
Total 200 patches 4,681 6,213 10,894 6,665

4.3 Dataset

The dataset is especially developed for the commonly seen gastric cancer with
10,894 whole slide images in total. Data distribution of pixel-level fine-grained la-
beled patches, positive and negative whole slides, train/test separation are shown
in Tab. 1, this ratio 1:9 of positive and negative is approximately the same distri-
bution of clinical daily works. All the slides are automatically scanned by digital
pathology scanner Leica Aperio AT2 at 20X magnification (0.50µm/pixel). The
image-level annotation is either ‘Positive’, which refers to low-grade intraepithe-
lial neoplasia, high-grade intraepithelial neoplasia, adenocarcinoma, signet ring
cell carcinoma, and poorly cohesive carcinoma, or ‘Negative’, including chronic
atrophic gastritis, chronic non-atrophic gastritis, intestinal metaplasia, gastric
polyps, gastric mucosal erosion, etc.

4.4 Results

Released source code from Campanella et al. [1] running on our data is the com-
pared image-level baseline for our hybrid supervision learning, which only uses
the image-level label for training. This code can produce patch-level classifica-
tion probability, not pixel-level. Statistically their weak supervision learning on
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Fig. 3. ROC curve detail of the three setting. In fact hybrid supervision learning can
finally achieve specificity 0.9049 at probability threshold 0.1421.

our data achieve 80.40% specificity while retaining 100% sensitivity at thresh-
old P = 0.0012. At the same time our hybrid supervision framework can achieve
89.32% specificity with 100% sensitivity at threshold P = 0.1000, 8.92% far more
than image-level annotation. These are summarized in Fig. 3.

The reason for this phenomenon is that with image-level labels only, Cam-
panella et al [1] searches the minimum representative patches responsible for
image-level labels, without covering the most positive regions. At the same time
our hybrid supervision learning framework is trained on most of positive patches
in each positive whole slide image. More positive training samples establish more
clear boundary between positive and negative patches, leading to higher speci-
ficity and area under curve.

Table 2. Statistics results of gastric cancer dataset.

Metrics Hybrid Pixel-level [9] Image-level [1]

Sensitivity 1.0000 1.0000 1.0000
Specificity 0.8932 0.8412 0.8040
AUC 0.9906 0.9848 0.9705
Threshold 0.1000 0.0041 0.0012

In pixel-level training, 200 pixel-level fine-grained labeled big patches are
used to train the initial patch segmentation model then select top patches for
whole slide images classifier training, without image-level labels guided pixel-
level pseudo labels generation. This procedure can be regarded as backbone
shared hybrid supervision learning, using existing annotations without extract-
ing pixel-level pseudo labels in image-level positive images. This configuration
provided us 84.12% specificity, 5.2% lower than hybrid supervision learning, indi-
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cating the proposed hybrid supervision learning is better than simple backbones
sharing manner. As for thresholds, in test data hybrid supervision learning could
reach 0.9049 specificity at threshold = 0.1421, while Pixel-level and Image-level
have to use extremely low threshold for 100% sensitivity, due to less supervision
information.

5 Conclusions

In this paper we propose a novel hybrid supervision framework especially for
whole slide images classification. Without entire image input to do end-to-end
classification training. Pixel-level false negatives is prevented by re-weighting on
pseudo labels of selected patches from positive images. False positives is sup-
pressed by high training sampling ratio of hard negative patches. With this
framework and a few pixel-level fine-grained labeled data, we can properly uti-
lize large amount of image-level labeled whole slide images, train models in seg-
mentation manner, and get much higher performance compared to using single
format of annotation only, or just the existing pixel-level fine-grained labels.
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