Skip to main content

Non-parametric Vignetting Correction for Sparse Spatial Transcriptomics Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Spatial transcriptomics techniques such as STARmap [15] enable the subcellular detection of RNA transcripts within complex tissue sections. The data from these techniques are impacted by optical microscopy limitations, such as shading or vignetting effects from uneven illumination during image capture. Downstream analysis of these sparse spatially resolved transcripts is dependent upon the correction of these artefacts. This paper introduces a novel non-parametric vignetting correction tool for spatial transcriptomic images, which estimates the illumination field and background using an efficient iterative sliced histogram normalization routine. We show that our method outperforms the state-of-the-art shading correction techniques both in terms of illumination and background field estimation and requires fewer input images to perform the estimation adequately. We further demonstrate an important downstream application of our technique, showing that spatial transcriptomic volumes corrected by our method yield a higher and more uniform gene expression spot-calling in the rodent hippocampus. Python code and a demo file to reproduce our results are provided in the supplementary material and at this github page: https://github.com/BoveyRao/Non-parametric-vc-for-sparse-st.

B. Y. Rao and A. M. Peterson—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, S., Loper, J., Chen, X., Zador, T., Paninski, L.: Barcode demixing through non-negative spatial regression (BarDensr). bioRxiv (2020)

    Google Scholar 

  2. Guizar-Sicairos, M., Thurman, S.T., Fienup, J.R.: Efficient subpixel image registration algorithms. Opt. Lett. 33(2), 156–158 (2008)

    Article  Google Scholar 

  3. Kim, S.J., Pollefeys, M.: Robust radiometric calibration and vignetting correction. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 562–576 (2008)

    Article  Google Scholar 

  4. Kolouri, S., Zou, Y., Rohde, G.K.: Sliced Wasserstein kernels for probability distributions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5258–5267 (2016)

    Google Scholar 

  5. Lee, J.K., Chung, J., Druey, K.M., Tansey, M.G.: Rgs10 exerts a neuroprotective role through the PKA/C-AMP response-element (CREB) pathway in dopaminergic neuron-like cells. J. Neurochem. 122(2), 333–343 (2012)

    Article  Google Scholar 

  6. Lee, J.H., et al.: Highly multiplexed subcellular RNA sequencing in situ. Science 343(6177), 1360–1363 (2014)

    Article  Google Scholar 

  7. Mitra, R.D., Shendure, J., Olejnik, J., Church, G.M., et al.: Fluorescent in situ sequencing on polymerase colonies. Anal. Biochem. 320(1), 55–65 (2003)

    Article  Google Scholar 

  8. Oreopoulos, J., Berman, R., Browne, M.: Spinning-disk confocal microscopy: present technology and future trends. Methods Cell Biol. 123, 153–175 (2014)

    Article  Google Scholar 

  9. Peng, T., et al.: A basic tool for background and shading correction of optical microscopy images. Nat. Commun. 8(1), 1–7 (2017)

    Article  Google Scholar 

  10. Peng, T., Wang, L., Bayer, C., Conjeti, S., Baust, M., Navab, N.: Shading correction for whole slide image using low rank and sparse decomposition. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 33–40. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_5

    Chapter  Google Scholar 

  11. Piccinini, F., Bevilacqua, A., Smith, K., Horvath, P.: Vignetting and photo-bleaching correction in automated fluorescence microscopy from an array of overlapping images. In: 2013 IEEE 10th International Symposium on Biomedical Imaging, pp. 464–467. IEEE (2013)

    Google Scholar 

  12. Smith, K., et al.: CIDRE: an illumination-correction method for optical microscopy. Nat. Methods 12(5), 404–406 (2015)

    Article  Google Scholar 

  13. Stosiek, C., Garaschuk, O., Holthoff, K., Konnerth, A.: In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. 100(12), 7319–7324 (2003)

    Article  Google Scholar 

  14. Tomaževič, D., Likar, B., Pernuš, F.: Comparative evaluation of retrospective shading correction methods. J. Microsc. 208(3), 212–223 (2002)

    Article  MathSciNet  Google Scholar 

  15. Wang, X., et al.: Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361(6400) (2018)

    Google Scholar 

  16. Zeisel, A., et al.: Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-Seq. Science 347(6226), 1138–1142 (2015)

    Article  Google Scholar 

  17. Zheng, Y., Lin, S., Kambhamettu, C., Yu, J., Kang, S.B.: Single-image vignetting correction. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2243–2256 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

BYR, SH, and AL are supported by NIMH 1R01MH124047 and 1R01MH124867; and NINDS 1U19NS104590 and 1U01NS115530. SH also is supported by NIMH 5K00MH121382. AMP, EKK, and AHR are funded from CZF2019-002460 and 1R01MH124047-01. LP, EV are supported by Simons Foundation 543023, NSF 1912194, NSF NeuroNex Award 1707398 and The Gatsby Charitable Foundation GAT3708.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abbas H. Rizvi or Erdem Varol .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1310 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rao, B.Y. et al. (2021). Non-parametric Vignetting Correction for Sparse Spatial Transcriptomics Images. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12908. Springer, Cham. https://doi.org/10.1007/978-3-030-87237-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87237-3_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87236-6

  • Online ISBN: 978-3-030-87237-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics