Skip to main content

Hepatocellular Carcinoma Segmentation from Digital Subtraction Angiography Videos Using Learnable Temporal Difference

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Automatic segmentation of hepatocellular carcinoma (HCC) in Digital Subtraction Angiography (DSA) videos can assist radiologists in efficient diagnosis of HCC and accurate evaluation of tumors in clinical practice. Few studies have investigated HCC segmentation from DSA videos. It shows great challenging due to motion artifacts in filming, ambiguous boundaries of tumor regions and high similarity in imaging to other anatomical tissues. In this paper, we raise the problem of HCC segmentation in DSA videos, and build our own DSA dataset. We also propose a novel segmentation network called DSA-LTDNet, including a segmentation sub-network, a temporal difference learning (TDL) module and a liver region segmentation (LRS) sub-network for providing additional guidance. DSA-LTDNet is preferable for learning the latent motion information from DSA videos proactively and boosting segmentation performance. All of experiments are conducted on our self-collected dataset. Experimental results show that DSA-LTDNet increases the DICE score by nearly 4% compared to the U-Net baseline.

The work was supported in part by Key-Area Research and Development Program of Guangdong Province [2020B0101350001], in part by the National Key R&D Program of China with grant No. 2018YFB1800800, by Shenzhen Outstanding Talents Training Fund, and by Guangdong Research Project No. 2017ZT07X152. It was also supported by NFSC 61931024 and National Natural Science Foundation of China (81871323).

W. Jiang, Y. Jiang, L. Zhang—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liapi, E., Georgiades, C.C., Hong, K., Geschwind, J.-F.H.: Transcatheter arterial chemoembolization: current technique and future promise. Tech. Vasc. Interv. Radiol. 10(1), 2–11 (2007)

    Article  Google Scholar 

  2. Cheng, J., Tsai, Y.-H., Wang, S., Yang, M.-H.: SegFlow: joint learning for video object segmentation and optical flow. In: Proceedings of the IEEE International Conference on computer Vision, pp. 686–695 (2017)

    Google Scholar 

  3. Guo, J., Wang, J., Bai, R., Zhang, Y., Li, Y.: A new moving object detection method based on frame-difference and background subtraction. In: IOP Conference Series: Materials Science and Engineering, vol. 242, p. 012115. IOP Publishing (2017)

    Google Scholar 

  4. Tsai, Y.-H., Yang, M.-H., Black, M.J.: Video segmentation via object flow. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3899–3908 (2016)

    Google Scholar 

  5. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  6. Shafie, A.A., Hafiz, F., Ali, M., et al.: Motion detection techniques using optical flow. World Acad. Sci. Eng. Technol. 56, 559–561 (2009)

    Google Scholar 

  7. Singla, N.: Motion detection based on frame difference method. Int. J. Inf. Comput. Technol. 4(15), 1559–1565 (2014)

    Google Scholar 

  8. Kavitha, K., Tejaswini, A.: Vibe: background detection and subtraction for image sequences in video. Int. J. Comput. Sci. Inf. Technol. 3(5), 5223–5226 (2012)

    Google Scholar 

  9. Forner, A., Reig, M.E., de Lope, C.R., Bruix, J.: Current strategy for staging and treatment: the BCLC update and future prospects. In: Seminars in Liver Disease, vol. 30, pp. 061–074. Thieme Medical Publishers (2010)

    Google Scholar 

  10. Bruix, J., Sherman, M.: Management of hepatocellular carcinoma. Hepatology 42(5), 1208–1236 (2005)

    Article  Google Scholar 

  11. Durand, F., Valla, D.: Assessment of the prognosis of cirrhosis: Child-Pugh versus MELD. J. Hepatol. 42(1), S100–S107 (2005)

    Article  Google Scholar 

  12. Oken, M.M., et al.: Toxicity and response criteria of the eastern cooperative oncology group. Am. J. Clin. Oncol. 5(6), 649–656 (1982)

    Article  Google Scholar 

  13. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77(1–3), 157–173 (2008)

    Article  Google Scholar 

  14. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  15. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  16. Isensee, F., et al.: nnU-Net: self-adapting framework for U-Net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, W. et al. (2021). Hepatocellular Carcinoma Segmentation from Digital Subtraction Angiography Videos Using Learnable Temporal Difference. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics