Skip to main content

Cost-Sensitive Meta-learning for Progress Prediction of Subjective Cognitive Decline with Brain Structural MRI

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12905))

Abstract

Subjective cognitive decline (SCD) is a preclinical phase of Alzheimer’s disease (AD) which occurs before the deficits could be detected by cognitive tests. It is highly desired to predict the progress of SCD for possible intervention of AD-related cognitive decline. Many neuroimaging-based methods have been developed for AD diagnosis, but there are few studies devoted to automated progress prediction of SCD due to the limited number of SCD subjects. Even though some studies proposed to transfer models (trained on AD/MCI) to SCD analysis, the significant domain shift between their data distributions may degrade the prediction performance. To this end, this paper tackles the problem of learning a model from the source data for which can directly generalize to an unseen target domain for SCD prediction. We propose a cost-sensitive meta-learning scheme to simultaneously improve the model generalization and its sensitivity in MRI-based SCD detection. During training, the source domain is divided into virtual meta-train and meta-test sets to explicitly simulate the scenario for early-stage detection of AD. Considering the importance of sensitivity for progressive status detection, we further introduce cost-sensitive learning to enhance the meta-optimization process by encouraging the model to gain higher sensitivity for SCD detection with simulated domain shift. Experiments conducted on the large-scale ADNI dataset and a small-scale SCD dataset have demonstrated the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://ida.loni.usc.edu.

  2. 2.

    https://www.fil.ion.ucl.ac.uk/spm.

  3. 3.

    https://pytorch.org.

References

  1. Jessen, F., et al.: A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimer’s Dementia 10(6), 844–852 (2014)

    Article  Google Scholar 

  2. Rabin, L.A., Smart, C.M., Amariglio, R.E.: Subjective cognitive decline in preclinical Alzheimer’s disease. Annu. Rev. Clin. Psychol. 13, 369–396 (2017)

    Article  Google Scholar 

  3. Amariglio, R.E., et al.: Subjective cognitive complaints and amyloid burden in cognitively normal older individuals. Neuropsychologia 50(12), 2880–2886 (2012)

    Article  Google Scholar 

  4. Jessen, F., et al.: AD dementia risk in late MCI, in early MCI, and in subjective memory impairment. Alzheimer’s Dementia 10(1), 76–83 (2014)

    Article  Google Scholar 

  5. Jack, C.R., Jr., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Resonan. Imaging Official J. Int. Soc. Magn. Resonan. Med. 27(4), 685–691 (2008)

    Google Scholar 

  6. Liu, M., Zhang, J., Adeli, E., Shen, D.: Landmark-based deep multi-instance learning for brain disease diagnosis. Med. Image Anal. 43, 157–168 (2018)

    Article  Google Scholar 

  7. Wang, M., Zhang, D., Huang, J., Yap, P.T., Shen, D., Liu, M.: Identifying autism spectrum disorder with multi-site fMRI via low-rank domain adaptation. IEEE Trans. Med. Imaging 39(3), 644–655 (2019)

    Article  Google Scholar 

  8. Yao, D., Calhoun, V.D., Fu, Z., Du, Y., Sui, J.: An ensemble learning system for a 4-way classification of Alzheimer’s disease and mild cognitive impairment. J. Neurosci. Methods 302, 75–81 (2018)

    Article  Google Scholar 

  9. Liu, Y., et al.: Joint neuroimage synthesis and representation learning for conversion prediction of subjective cognitive decline. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 583–592. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_57

    Chapter  Google Scholar 

  10. Cheng, N., et al.: Self-weighted multi-task learning for subjective cognitive decline diagnosis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 104–113. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_11

    Chapter  Google Scholar 

  11. Wachinger, C., Reuter, M.: Domain adaptation for Alzheimer’s disease diagnostics. NeuroImage 139, 470–479 (2016)

    Article  Google Scholar 

  12. Cheng, B., Liu, M., Zhang, D., Munsell, B.C., Shen, D.: Domain transfer learning for MCI conversion prediction. IEEE Trans. Biomed. Eng. 62(7), 1805–1817 (2015)

    Article  Google Scholar 

  13. Hosseini-Asl, E., Keynton, R., El-Baz, A.: Alzheimer’s disease diagnostics by adaptation of 3D convolutional network. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 126–130. IEEE (2016)

    Google Scholar 

  14. Ghafoorian, M., et al.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 516–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_59

    Chapter  Google Scholar 

  15. Orbes-Arteaga, M., et al.: Multi-domain adaptation in brain MRI through paired consistency and adversarial learning. In: Wang, Q., et al. (eds.) DART/MIL3ID -2019. LNCS, vol. 11795, pp. 54–62. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33391-1_7

    Chapter  Google Scholar 

  16. Li, W., Zhao, Y., Chen, X., Xiao, Y., Qin, Y.: Detecting Alzheimer’s disease on small dataset: a knowledge transfer perspective. IEEE J. Biomed. Health Inform. 23(3), 1234–1242 (2018)

    Article  Google Scholar 

  17. Guan, H., Liu, Y., Yang, E., Yap, P.T., Shen, D., Liu, M.: Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification. Med. Image Anal. 71, 102076 (2021)

    Article  Google Scholar 

  18. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  19. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Learning to generalize: Meta-learning for domain generalization. In: Proceedings of the AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  20. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 3981–3989 (2016)

    Google Scholar 

  21. Ling, C.X., Sheng, V.S.: Cost-sensitive learning and the class imbalance problem. Encyclopedia Mach. Learn. 2008, 231–235 (2011)

    Google Scholar 

  22. Kuo, W., Häne, C., Yuh, E., Mukherjee, P., Malik, J.: Cost-sensitive active learning for intracranial hemorrhage detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 715–723. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_82

    Chapter  Google Scholar 

  23. Galdran, A., Dolz, J., Chakor, H., Lombaert, H., Ben Ayed, I.: Cost-sensitive regularization for diabetic retinopathy grading from eye fundus images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 665–674. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_64

    Chapter  Google Scholar 

  24. Korolev, S., Safiullin, A., Belyaev, M., Dodonova, Y.: Residual and plain convolutional neural networks for 3D brain MRI classification. In: ISBI, pp. 835–838 (2017)

    Google Scholar 

  25. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  26. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: ICLR (2014)

    Google Scholar 

  27. Yue, L., et al.: Prediction of 7-year’s conversion from subjective cognitive decline to mild cognitive impairment. Hum. Brain Mapp. 42(1), 192–203 (2021)

    Article  Google Scholar 

  28. Felpete, A., et al.: Predicting progression in subjective cognitive decline (SCD) using a machine learning (ML) approach: the role of the complaint’s severity. Alzheimer’s Dementia 16, e043492 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

H. Guan and M. Liu were partly supported by NIH grant (No. AG041721).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxia Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guan, H., Liu, Y., Xiao, S., Yue, L., Liu, M. (2021). Cost-Sensitive Meta-learning for Progress Prediction of Subjective Cognitive Decline with Brain Structural MRI. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics