Skip to main content

Joint Spinal Centerline Extraction and Curvature Estimation with Row-Wise Classification and Curve Graph Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Spinal curvature estimation plays an important role in adolescent idiopathic scoliosis (AIS) evaluation and treatment. The Cobb angle is a well-established standard for spinal curvature estimation. Recent studies of Cobb angle estimation usually rely on detection of vertebra landmarks which requires complex post-processing of curvature calculation. Approaches directly regressing the Cobb angles apply entire image or centerline segmentation results as the network input, which limits exploring the specific curve structure of the spine. In this paper, we propose a deep learning-based approach to simultaneously estimate spine centerline and spinal curvature with shared convolutional backbone. The spine centerline extraction is formulated as a row-wise classification task. To directly regress Cobb angles, we adopt curve graph convolution to exploit curve structure of the spine centerline. In addition, given a spine centerline, a Curve Feature Pooling (CFP) module is designed to aggregate features used as the input of Curve Graph Network (CGN) to regress the Cobb angles. We evaluate our method on the accurate automated spinal curvature estimation (AASCE) challenge 2019, and the proposed approach achieves promising results on both spine centerline extraction and Cobb angles estimation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, K., Peng, C., Li, Y., Cheng, D., Wei, S.: Accurate automated keypoint detections for spinal curvature estimation. In: Cai, Y., Wang, L., Audette, M., Zheng, G., Li, S. (eds.) CSI 2019. LNCS, vol. 11963, pp. 63–68. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39752-4_6

    Chapter  Google Scholar 

  2. Dubost, F., et al.: Automated estimation of the spinal curvature via spine centerline extraction with ensembles of cascaded neural networks. In: Cai, Y., Wang, L., Audette, M., Zheng, G., Li, S. (eds.) CSI 2019. LNCS, vol. 11963, pp. 88–94. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39752-4_10

    Chapter  Google Scholar 

  3. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  4. Khanal, B., Dahal, L., Adhikari, P., Khanal, B.: Automatic cobb angle detection using vertebra detector and vertebra corners regression. In: Cai, Y., Wang, L., Audette, M., Zheng, G., Li, S. (eds.) CSI 2019. LNCS, vol. 11963, pp. 81–87. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39752-4_9

    Chapter  Google Scholar 

  5. Lin, Y., Zhou, H.-Y., Ma, K., Yang, X., Zheng, Y.: Seg4Reg networks for automated spinal curvature estimation. In: Cai, Y., Wang, L., Audette, M., Zheng, G., Li, S. (eds.) CSI 2019. LNCS, vol. 11963, pp. 69–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39752-4_7

    Chapter  Google Scholar 

  6. Liu, R., et al.: An intriguing failing of convolutional neural networks and the coordconv solution. arXiv preprint arXiv:1807.03247 (2018)

  7. Pan, X., Shi, J., Luo, P., Wang, X., Tang, X.: Spatial as deep: spatial CNN for traffic scene understanding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  8. Peng, S., Jiang, W., Pi, H., Li, X., Bao, H., Zhou, X.: Deep snake for real-time instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8533–8542 (2020)

    Google Scholar 

  9. Qin, Z., Wang, H., Li, X.: Ultra fast structure-aware deep lane detection. arXiv preprint arXiv:2004.11757 (2020)

  10. Sekuboyina, A., et al.: Verse: A vertebrae labelling and segmentation benchmark for multi-detector CT images (2020)

    Google Scholar 

  11. Tabelini, L., Berriel, R., Paixão, T.M., Badue, C., De Souza, A.F., Olivera-Santos, T.: Keep your eyes on the lane: attention-guided lane detection. arXiv preprint arXiv:2010.12035 (2020)

  12. Tao, R., Xu, S., Wu, H., Zhang, C., Lv, C.: Automated spinal curvature assessment from X-ray images using landmarks estimation network via rotation proposals. In: Cai, Y., Wang, L., Audette, M., Zheng, G., Li, S. (eds.) CSI 2019. LNCS, vol. 11963, pp. 95–100. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39752-4_11

    Chapter  Google Scholar 

  13. Wang, J., Wang, L., Liu, C.: A multi-task learning method for direct estimation of spinal curvature. In: Cai, Y., Wang, L., Audette, M., Zheng, G., Li, S. (eds.) CSI 2019. LNCS, vol. 11963, pp. 113–118. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39752-4_14

    Chapter  Google Scholar 

  14. Wang, S., Huang, S., Wang, L.: Spinal curve guide network (SCG-Net) for accurate automated spinal curvature estimation. In: Cai, Y., Wang, L., Audette, M., Zheng, G., Li, S. (eds.) CSI 2019. LNCS, vol. 11963, pp. 107–112. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39752-4_13

    Chapter  Google Scholar 

  15. Wang, X., Kong, T., Shen, C., Jiang, Y., Li, L.: SOLO: segmenting objects by locations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 649–665. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_38

    Chapter  Google Scholar 

  16. Zhao, S., Wang, B., Yang, K., Li, Y.: Automatic spine curvature estimation by a top-down approach. In: Cai, Y., Wang, L., Audette, M., Zheng, G., Li, S. (eds.) CSI 2019. LNCS, vol. 11963, pp. 75–80. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39752-4_8

    Chapter  Google Scholar 

  17. Zhong, Z., Li, J., Zhang, Z., Jiao, Z., Gao, X.: A coarse-to-fine deep heatmap regression method for adolescent idiopathic scoliosis assessment. In: Cai, Y., Wang, L., Audette, M., Zheng, G., Li, S. (eds.) CSI 2019. LNCS, vol. 11963, pp. 101–106. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39752-4_12

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the grant of NSFC (61804100, 61973294, 61806181), KRDP of Anhui Province (201904a05020086) and CAS (GJTD-2018-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkang Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huo, L. et al. (2021). Joint Spinal Centerline Extraction and Curvature Estimation with Row-Wise Classification and Curve Graph Network. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics