Skip to main content

Possibility Distributions Generated by Intuitionistic \(\textsf {L}\)-Fuzzy Sets

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12872))

Included in the following conference series:

  • 487 Accesses

Abstract

In this work, we bridge possibility theory with intuitionistic L-fuzzy sets, by identifying a special class of possibility distributions corresponding to intuitionistic \(\textsf {L}\)-fuzzy sets based on a complete residuated lattice with an involution. Moreover, taking the \(\L \)ukasiewicz n-chains as structures of truth degrees, we propose an algorithm to compute the intuitionistic \(\textsf {L}\)-fuzzy set corresponding to a given possibility distribution, in case it exists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\textsf {L}\)-sets were introduced by Goguen [21] as generalizations of fuzzy sets.

  2. 2.

    We notice that, as in Definition 3, \(\mu \) and \(\nu \) have a symmetrical role, in the sense that \(\mu (x) \le \lnot \nu (x)\) is equivalent to \(\nu (x) \le \lnot \mu (x)\).

  3. 3.

    Additionally, given a intuitionistic \(\textsf {L}\)-fuzzy set \((\mu ,\nu )\), the value \(\pi _{(\mu , \nu )}(\omega )\) can be also understood as an answer to a bipolar fuzzy query given by \((\mu , \nu )\), where \(\mu \) and \(\nu \) respectively express positive and negative elastic constraints.

  4. 4.

    More in general, Proposition 4 holds when we consider complete residuated lattices with an involution and [0, 1] as support.

References

  1. Atanassov, K.: Review and new results on intuitionistic fuzzy sets. preprint Im-MFAIS-1-88, Sofia 5, l (1988)

    Google Scholar 

  2. Atanassov, K.: Intuitionistic fuzzy sets. Int. J. Bioautom. 20, 1 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Atanassov, K.T.: Intuitionistic Fuzzy Sets: Theory and Applications (studies in fuzziness and soft computing), vol. 35. Physica-Verlag, Heidelberg (1999)

    Google Scholar 

  4. Atanassov, K.T., Stoeva, S.: Intuitionistic l-fuzzy sets. In: Cybernetics and Systems Research 2, vol. 23, pp. 539–540, Trappl R. (ed.) Elsevier Scientific Publications, Amsterdam (1984)

    Google Scholar 

  5. Boffa, S., Murinová, P., Novák, V.: Graded decagon of opposition with fuzzy quantifier-based concept-forming operators. In: Lesot, M.J., et al. (eds.) IPMU 2020. CCIS, vol. 1239, pp. 131–144. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50153-2_10

    Chapter  Google Scholar 

  6. Chang, C.C.: Algebraic analysis of many valued logics. Trans. Am. Math. Soc. 88(2), 467–490 (1958)

    Article  MathSciNet  Google Scholar 

  7. Ciucci, D.: Orthopairs and granular computing. Granul. Comput. 1(3), 159–170 (2016)

    Article  Google Scholar 

  8. Ciucci, D., Dubois, D., Lawry, J.: Borderline vs. unknown: comparing three-valued representations of imperfect information. Int. J. Approx. Reason. 55(9), 1866–1889 (2014)

    Google Scholar 

  9. Ciucci, D., Forcati, I.: Certainty-based rough sets. In: Polkowski, L., et al. (eds.) IJCRS 2017. LNCS (LNAI), vol. 10314, pp. 43–55. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60840-2_3

    Chapter  Google Scholar 

  10. Cohen, L.J.: The probable and the provable (1977)

    Google Scholar 

  11. Dubois, D., Fargier, H., Prade, H.: Possibility theory in constraint satisfaction problems: handling priority, preference and uncertainty. Appl. Intell. 6(4), 287–309 (1996)

    Article  Google Scholar 

  12. Dubois, D., Moral, S., Prade, H.: A semantics for possibility theory based on likelihoods. J. Math. Anal. Appl. 205(2), 359–380 (1997)

    Article  MathSciNet  Google Scholar 

  13. Dubois, D., Prade, H.: Ranking fuzzy numbers in the setting of possibility theory. Inf. Sci. 30(3), 183–224 (1983)

    Article  MathSciNet  Google Scholar 

  14. Dubois, D., Prade, H.: Fuzzy rules in knowledge-based systems. In: Yager, R.R., Zadeh, L.A. (eds.) An Introduction to Fuzzy Logic Applications in Intelligent Systems. The Springer International Series in Engineering and Computer Science (Knowledge Representation, Learning and Expert Systems), vol. 165, pp. 45–68. Springer, Boston, MA (1992). https://doi.org/10.1007/978-1-4615-3640-6_3

  15. Dubois, D., Prade, H.: Possibility theory: qualitative and quantitative aspects. In: Smets, P. (ed.) Quantified Representation of Uncertainty and Imprecision. HDRUMS, vol. 1, pp. 169–226. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-017-1735-9_6

    Chapter  MATH  Google Scholar 

  16. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Springer Science & Business Media, Heidelberg (2012)

    Google Scholar 

  17. Dubois, D., Prade, H.: Possibility theory and its applications: where do we stand? In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 31–60. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_3

    Chapter  MATH  Google Scholar 

  18. Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124(3), 271–288 (2001)

    Article  MathSciNet  Google Scholar 

  19. Galatos, N., Raftery, J.G.: Adding involution to residuated structures. Stud. Log. 77(2), 181–207 (2004)

    Article  MathSciNet  Google Scholar 

  20. Gerstenkorn, T., Tepavĉević, A.: Lattice valued intuitionistic fuzzy sets. Open Math. 2(3), 388–398 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18(1), 145–174 (1967)

    Article  MathSciNet  Google Scholar 

  22. Goguen, J.A.: The logic of inexact concepts. Synthese, pp. 325–373 (1969)

    Google Scholar 

  23. Gottwald, S., Gottwald, P.S.: A Treatise on Many-Valued Logics, vol. 3. Research Studies Press Baldock, Boston (2001)

    Google Scholar 

  24. Hájek, P.: Basic fuzzy logic and bl-algebras. Soft. Comput. 2(3), 124–128 (1998)

    Article  Google Scholar 

  25. Hájek, P.: Metamathematics of Fuzzy Logic, vol. 4. Springer Science & Business Media, Heidelberg (2013)

    Google Scholar 

  26. Höhle, U.: On the fundamentals of fuzzy set theory. J. Math. Anal. Appl. 201(3), 786–826 (1996)

    Article  MathSciNet  Google Scholar 

  27. Lewis, D.: Counterfactuals. John Wiley & Sons, Hoboken (2013)

    Google Scholar 

  28. Lukasiewicz, J.: Untersuchungen uber den aussagenkalkul. CR des seances de la Societe des Sciences et des Letters de Varsovie, cl. III 23 (1930)

    Google Scholar 

  29. Nakata, M., Sakai, H.: Lower and upper approximations in data tables containing possibilistic information. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 170–189. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71663-1_11

    Chapter  Google Scholar 

  30. Nakata, M., Sakai, H.: Rough sets by indiscernibility relations in data sets containing possibilistic information. In: Flores, V., et al. (eds.) IJCRS 2016. LNCS (LNAI), vol. 9920, pp. 187–196. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47160-0_17

    Chapter  MATH  Google Scholar 

  31. Novák, V., Perfilieva, I., Dvorak, A.: Insight into Fuzzy Modeling. John Wiley & Sons, Hoboken (2016)

    Google Scholar 

  32. Shackle, G.L.S.: Decision Order and Time in Human Affairs. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  33. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(1), 3–28 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Boffa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boffa, S., Ciucci, D. (2021). Possibility Distributions Generated by Intuitionistic \(\textsf {L}\)-Fuzzy Sets. In: Ramanna, S., Cornelis, C., Ciucci, D. (eds) Rough Sets. IJCRS 2021. Lecture Notes in Computer Science(), vol 12872. Springer, Cham. https://doi.org/10.1007/978-3-030-87334-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87334-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87333-2

  • Online ISBN: 978-3-030-87334-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics