Skip to main content

Boundary Information Aggregation andĀ Adaptive Keypoint Combination Enhanced Object Detection

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12888))

Included in the following conference series:

Abstract

Keypoint-based methods achieve increasing attention and competitive performance in the field of object detection. In this paper, we propose a new keypoint-based object detection method in order to better locate center keypoints of objects and adaptively combine keypoints to obtain more accurate bounding boxes. Specifically, to better locate center keypoints of objects, we aggregate boundary information by adding the center pooling operation to the original center keypoints prediction branch. The boundary information is the location of object boundary which is more easier to predict than object center. Furthermore, to obtain more accurate bounding boxes, we propose an adaptive keypoint combination algorithm to map all keypoints back to the original image so that the keypoints are combined with less localization errors. Experiments have demonstrated the effectiveness of the our proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. arXiv preprint arXiv:1605.06409 (2016)

  2. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6569ā€“6578 (2019)

    Google ScholarĀ 

  3. Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: DSSD: deconvolutional single shot detector. arXiv preprint arXiv:1701.06659 (2017)

  4. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440ā€“1448 (2015)

    Google ScholarĀ 

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580ā€“587 (2014)

    Google ScholarĀ 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904ā€“1916 (2015)

    ArticleĀ  Google ScholarĀ 

  7. Jiao, L., et al.: A survey of deep learning-based object detection. IEEE Access 7, 128837ā€“128868 (2019)

    ArticleĀ  Google ScholarĀ 

  8. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 734ā€“750 (2018)

    Google ScholarĀ 

  9. Lin, T.Y., Goyal, P., Girshick, R., He, K., DollĆ”r, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980ā€“2988 (2017)

    Google ScholarĀ 

  10. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740ā€“755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    ChapterĀ  Google ScholarĀ 

  11. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21ā€“37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    ChapterĀ  Google ScholarĀ 

  12. Newell, A., Huang, Z., Deng, J.: Associative embedding: end-to-end learning for joint detection and grouping. arXiv preprint arXiv:1611.05424 (2016)

  13. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483ā€“499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    ChapterĀ  Google ScholarĀ 

  14. Papadopoulos, D.P., Uijlings, J.R., Keller, F., Ferrari, V.: Extreme clicking for efficient object annotation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4930ā€“4939 (2017)

    Google ScholarĀ 

  15. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779ā€“788 (2016)

    Google ScholarĀ 

  16. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263ā€“7271 (2017)

    Google ScholarĀ 

  17. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497 (2015)

  18. Shen, Z., Liu, Z., Li, J., Jiang, Y.G., Chen, Y., Xue, X.: DSOD: learning deeply supervised object detectors from scratch. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1919ā€“1927 (2017)

    Google ScholarĀ 

  19. Shen, Z., et al.: Learning object detectors from scratch with gated recurrent feature pyramids. arXiv preprint arXiv:1712.00886 (2017)

  20. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154ā€“171 (2013)

    ArticleĀ  Google ScholarĀ 

  21. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 466ā€“481 (2018)

    Google ScholarĀ 

  22. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4203ā€“4212 (2018)

    Google ScholarĀ 

  23. Zhou, X., Zhuo, J., Krahenbuhl, P.: Bottom-up object detection by grouping extreme and center points. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 850ā€“859 (2019)

    Google ScholarĀ 

  24. Zou, Z., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey. arXiv preprint arXiv:1905.05055 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, P., Yao, D., Sun, L., Fan, J., Chen, P., Wei, Z. (2021). Boundary Information Aggregation andĀ Adaptive Keypoint Combination Enhanced Object Detection. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12888. Springer, Cham. https://doi.org/10.1007/978-3-030-87355-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87355-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87354-7

  • Online ISBN: 978-3-030-87355-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics