Skip to main content

Multi-homography Estimation and Inference Driven by Contour Alignment

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12888))

Included in the following conference series:

  • 1917 Accesses

Abstract

Recently, multiple homography estimation is preferable for image stitching to handle the parallax problem, by estimating homographies from the feature correspondence in each local region. However, correspondence outliers and insufficient feature coverage will lead to unreliable local homography fitting. In this paper, we propose a novel method of multi-homography estimation and inference, driven by contour alignment. Our method uses explicit structural verification through contour alignment to eliminate incorrectly fitted homographies in some regions, and to select a better homography from other regions if current homography is rejected or with worse accuracy. With the guidance of the contour alignment, dense image alignment result is obtained by further inferring the local homography per superpixel. Quantitative and qualitative comparisons demonstrate the effectiveness of our method, especially for scenes with large parallax and viewpoint changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vision 74(1), 59–73 (2007)

    Article  Google Scholar 

  2. Chang, C.H., Sato, Y., Chuang, Y.Y.: Shape-preserving half-projective warps for image stitching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3254–3261 (2014)

    Google Scholar 

  3. Chen, S.E.: Quicktime vr: an image-based approach to virtual environment navigation. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 29–38 (1995)

    Google Scholar 

  4. Chen, Y.-S., Chuang, Y.-Y.: Natural image stitching with the global similarity prior. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 186–201. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_12

    Chapter  Google Scholar 

  5. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J. Comput. Vision 70(1), 41–54 (2006)

    Article  Google Scholar 

  6. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  7. Gao, J., Kim, S.J., Brown, M.S.: Constructing image panoramas using dual-homography warping. In: CVPR 2011, pp. 49–56. IEEE (2011)

    Google Scholar 

  8. Herrmann, C., et al.: Robust image stitching with multiple registrations. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 53–67 (2018)

    Google Scholar 

  9. Herrmann, C., Wang, C., Strong Bowen, R., Keyder, E., Zabih, R.: Object-centered image stitching. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 821–835 (2018)

    Google Scholar 

  10. Jia, J., Tang, C.K.: Image stitching using structure deformation. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 617–631 (2008)

    Article  Google Scholar 

  11. Lafferty, J.D., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp. 282–289 (2001)

    Google Scholar 

  12. Lee, K.Y., Sim, J.Y.: Warping residual based image stitching for large parallax. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8198–8206 (2020)

    Google Scholar 

  13. Li, J., Deng, B., Tang, R., Wang, Z., Yan, Y.: Local-adaptive image alignment based on triangular facet approximation. IEEE Trans. Image Process. 29, 2356–2369 (2019)

    Article  Google Scholar 

  14. Li, J., Wang, Z., Lai, S., Zhai, Y., Zhang, M.: Parallax-tolerant image stitching based on robust elastic warping. IEEE Trans. Multimedia 20(7), 1672–1687 (2017)

    Article  Google Scholar 

  15. Li, N., Xu, Y., Wang, C.: Quasi-homography warps in image stitching. IEEE Trans. Multimedia 20(6), 1365–1375 (2017)

    Article  Google Scholar 

  16. Li, S., Yuan, L., Sun, J., Quan, L.: Dual-feature warping-based motion model estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4283–4291 (2015)

    Google Scholar 

  17. Liao, T., Li, N.: Single-perspective warps in natural image stitching. IEEE Trans. Image Process. 29, 724–735 (2019)

    Article  MathSciNet  Google Scholar 

  18. Lin, C.C., Pankanti, S.U., Natesan Ramamurthy, K., Aravkin, A.Y.: Adaptive as-natural-as-possible image stitching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1155–1163 (2015)

    Google Scholar 

  19. Lin, K., Jiang, N., Cheong, L.-F., Do, M., Lu, J.: SEAGULL: seam-guided local alignment for parallax-tolerant image stitching. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 370–385. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_23

    Chapter  Google Scholar 

  20. Lin, K., Jiang, N., Liu, S., Cheong, L.F., Do, M., Lu, J.: Direct photometric alignment by mesh deformation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2405–2413 (2017)

    Google Scholar 

  21. Lin, W.Y., Liu, S., Matsushita, Y., Ng, T.T., Cheong, L.F.: Smoothly varying affine stitching. In: CVPR 2011, pp. 345–352. IEEE (2011)

    Google Scholar 

  22. Liu, F., Gleicher, M., Jin, H., Agarwala, A.: Content-preserving warps for 3d video stabilization. ACM Trans. Graphics (TOG) 28(3), 1–9 (2009)

    Google Scholar 

  23. Lou, Z., Gevers, T.: Image alignment by piecewise planar region matching. IEEE Trans. Multimedia 16(7), 2052–2061 (2014)

    Article  Google Scholar 

  24. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  25. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Deepmatching: hierarchical deformable dense matching. Int. J. Comput. Vision 120(3), 300–323 (2016)

    Article  MathSciNet  Google Scholar 

  26. Silva, R.M., Feijó, B., Gomes, P.B., Frensh, T., Monteiro, D.: Real time 360 video stitching and streaming. In: ACM SIGGRAPH 2016 Posters, pp. 1–2 (2016)

    Google Scholar 

  27. Szeliski, R., Shum, H.Y., Shum, H.Y., Shum, H.Y.: Creating full view panoramic image mosaics and environment maps. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 251–258. ACM Press/Addison-Wesley Publishing Co. (1997)

    Google Scholar 

  28. Szeliski, R., et al.: Image alignment and stitching: a tutorial. Found. Trends® Comput. Graph. Vis. 2(1), 1–104 (2007)

    Google Scholar 

  29. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  30. Xiang, T.-Z., Xia, G.-S., Zhang, L.: Image stitching using smoothly planar homography. In: Lai, J.-H., et al. (eds.) PRCV 2018. LNCS, vol. 11256, pp. 524–536. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03398-9_45

    Chapter  Google Scholar 

  31. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Generalized belief propagation. In: Advances in Neural Information Processing Systems, pp. 689–695 (2001)

    Google Scholar 

  32. Zaragoza, J., Chin, T.J., Brown, M.S., Suter, D.: As-projective-as-possible image stitching with moving dlt. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2339–2346 (2013)

    Google Scholar 

  33. Zhang, F., Liu, F.: Parallax-tolerant image stitching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3262–3269 (2014)

    Google Scholar 

  34. Zheng, J., Wang, Y., Wang, H., Li, B., Hu, H.M.: A novel projective-consistent plane based image stitching method. IEEE Trans. Multimedia 21(10), 2561–2575 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Natural Science Foundation of China (NSFC) under Grant No. 61773062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijun Di .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, T., Jia, Y., Di, H., Wu, Y. (2021). Multi-homography Estimation and Inference Driven by Contour Alignment. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12888. Springer, Cham. https://doi.org/10.1007/978-3-030-87355-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87355-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87354-7

  • Online ISBN: 978-3-030-87355-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics