Skip to main content

Robust Ellipse Fitting with an Auxiliary Normal

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Abstract

Ellipse fitting is a critical part of various applications. Recovering the ellipse from noisy or incomplete arcs remains challenging. In this paper, we propose an optimization method for ellipse fitting with an auxiliary normal to improve the performance. Firstly, ellipse fitting using an unerring normal is derived according to the projection from a circle in the world frame to an ellipse in the image frame. It can recover an accurate one directly from a short arc without iterative steps. Then, owing to the measurement error, an ellipse can be fitted iteratively within a tolerance range centered on the measured faulty normal. Finally, the calculation of requisite fitting matrices is simplified to speedup optimization. Each matrix can be constructed directly from a general 6-by-6 ellipse fitting matrix. Experimental results show that our method performs better than 4 state-of-the-art methods with limited tolerance.

This work is supported by the National Natural Science Foundation of China under Grant 9174820.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arellano, C., Dahyot, R.: Robust ellipse detection with gaussian mixture models. Pattern Recogn. 58, 12–26 (2016)

    Article  Google Scholar 

  2. Benini, A., Rutherford, M.J., Valavanis, K.P.: Real-time, GPU-based pose estimation of a UAV for autonomous takeoff and landing. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 3463–3470 (2016)

    Google Scholar 

  3. Bookstein, F.L.: Fitting conic sections to scattered data. Comput. Graphics Image Process. 9(1), 56–71 (1979)

    Article  Google Scholar 

  4. Dong, H., Asadi, E., Sun, G., Prasad, D.K., Chen, I.: Real-time robotic manipulation of cylindrical objects in dynamic scenarios through elliptic shape primitives. IEEE Trans. Rob. 35(1), 95–113 (2019)

    Article  Google Scholar 

  5. Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21, 476–480 (1999). https://doi.org/10.1109/34.765658

    Article  Google Scholar 

  6. Fornaciari, M., Prati, A., Cucchiara, R.: A fast and effective ellipse detector for embedded vision applications. Pattern Recogn. 47(11), 3693–3708 (2014)

    Article  Google Scholar 

  7. Gander, W., Golub, G.H., Strebel, R.: Least-squares fitting of circles and ellipses. BIT Numer. Math. 34(4), 558–578 (1994)

    Article  MathSciNet  Google Scholar 

  8. Halır, R., Flusser, J.: Numerically stable direct least squares fitting of ellipses. In: Proceedings of the 6th International Conference in Central Europe on Computer Graphics and Visualization. WSCG, vol. 98, pp. 125–132. Citeseer (1998)

    Google Scholar 

  9. Hu, C., Wang, G., Ho, K.C., Liang, J.: Robust ellipse fitting with Laplacian kernel based maximum correntropy criterion. IEEE Trans. Image Process. 30, 3127–3141 (2021). https://doi.org/10.1109/TIP.2021.3058785

    Article  MathSciNet  Google Scholar 

  10. Jin, P., Matikainen, P., Srinivasa, S.S.: Sensor fusion for fiducial tags: highly robust pose estimation from single frame RGBD. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5770–5776 (2017)

    Google Scholar 

  11. Li, Z., et al.: Fast vision-based autonomous detection of moving cooperative target for unmanned aerial vehicle landing. J. Field Robot. 36(1), 34–48 (2019)

    Article  Google Scholar 

  12. Maini, E.S.: Enhanced direct least square fitting of ellipses. Int. J. Pattern Recogn. Artif. Intell. 20(06), 939–953 (2006)

    Article  Google Scholar 

  13. Meng, C., Li, Z., Bai, X., Zhou, F.: Arc adjacency matrix-based fast ellipse detection. IEEE Trans. Image Process. 29, 4406–4420 (2020)

    Article  MathSciNet  Google Scholar 

  14. Meng, C., Li, Z., Sun, H., Yuan, D., Bai, X., Zhou, F.: Satellite pose estimation via single perspective circle and line. IEEE Trans. Aerosp. Electron. Syst. 54(6), 3084–3095 (2018)

    Article  Google Scholar 

  15. Mulleti, S., Seelamantula, C.S.: Ellipse fitting using the finite rate of innovation sampling principle. IEEE Trans. Image Process. 25(3), 1451–1464 (2016). https://doi.org/10.1109/TIP.2015.2511580

    Article  MathSciNet  MATH  Google Scholar 

  16. Pătrăucean, V., Gurdjos, P., von Gioi, R.G.: A parameterless line segment and elliptical arc detector with enhanced ellipse fitting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 572–585. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_41

    Chapter  Google Scholar 

  17. Prasad, D.K., Leung, M.K.H., Cho, S.Y.: Edge curvature and convexity based ellipse detection method. Pattern Recogn. 45(9), 3204–3221 (2012)

    Article  Google Scholar 

  18. Prasad, D.K., Leung, M.K., Quek, C.: ElliFit: an unconstrained, non-iterative, least squares based geometric ellipse fitting method. Pattern Recogn. 46(5), 1449–1465 (2013). https://doi.org/10.1016/j.patcog.2012.11.007

    Article  MATH  Google Scholar 

  19. Rosin, P.L.: A note on the least squares fitting of ellipses. Pattern Recogn. Lett. 14(10), 799–808 (1993)

    Article  Google Scholar 

  20. Safaee-Rad, R., Tchoukanov, I., Smith, K.C., Benhabib, B.: Three-dimensional location estimation of circular features for machine vision. IEEE Trans. Robot. Autom. 8(5), 624–640 (1992)

    Article  Google Scholar 

  21. Szpak, Z.L., Chojnacki, W., van den Hengel, A.: Guaranteed ellipse fitting with the Sampson distance. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 87–100. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_7

    Chapter  Google Scholar 

  22. Szpak, Z.L., Chojnacki, W., Hengel, A.V.D.: Guaranteed ellipse fitting with a confidence region and an uncertainty measure for centre, axes, and orientation. J. Math. Imaging Vis. 52(2), 173–199 (2015)

    Article  MathSciNet  Google Scholar 

  23. Waibel, P., Matthes, J., Gröll, L.: Constrained ellipse fitting with center on a line. J. Math. Imaging Vis. 53(3), 364–382 (2015)

    Article  MathSciNet  Google Scholar 

  24. Yang, J., Gao, X., Li, Z., Li, S., Liang, B.: Pose measurement for capture of large satellite docking ring based on double-line structured light vision. In: Proceedings of the 2017 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017), pp. 1336–1345. Atlantis Press, May 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Meng, C., Li, D., Liu, L. (2021). Robust Ellipse Fitting with an Auxiliary Normal. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12888. Springer, Cham. https://doi.org/10.1007/978-3-030-87355-4_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87355-4_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87354-7

  • Online ISBN: 978-3-030-87355-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics