Abstract
Ellipse fitting is a critical part of various applications. Recovering the ellipse from noisy or incomplete arcs remains challenging. In this paper, we propose an optimization method for ellipse fitting with an auxiliary normal to improve the performance. Firstly, ellipse fitting using an unerring normal is derived according to the projection from a circle in the world frame to an ellipse in the image frame. It can recover an accurate one directly from a short arc without iterative steps. Then, owing to the measurement error, an ellipse can be fitted iteratively within a tolerance range centered on the measured faulty normal. Finally, the calculation of requisite fitting matrices is simplified to speedup optimization. Each matrix can be constructed directly from a general 6-by-6 ellipse fitting matrix. Experimental results show that our method performs better than 4 state-of-the-art methods with limited tolerance.
This work is supported by the National Natural Science Foundation of China under Grant 9174820.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arellano, C., Dahyot, R.: Robust ellipse detection with gaussian mixture models. Pattern Recogn. 58, 12–26 (2016)
Benini, A., Rutherford, M.J., Valavanis, K.P.: Real-time, GPU-based pose estimation of a UAV for autonomous takeoff and landing. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 3463–3470 (2016)
Bookstein, F.L.: Fitting conic sections to scattered data. Comput. Graphics Image Process. 9(1), 56–71 (1979)
Dong, H., Asadi, E., Sun, G., Prasad, D.K., Chen, I.: Real-time robotic manipulation of cylindrical objects in dynamic scenarios through elliptic shape primitives. IEEE Trans. Rob. 35(1), 95–113 (2019)
Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21, 476–480 (1999). https://doi.org/10.1109/34.765658
Fornaciari, M., Prati, A., Cucchiara, R.: A fast and effective ellipse detector for embedded vision applications. Pattern Recogn. 47(11), 3693–3708 (2014)
Gander, W., Golub, G.H., Strebel, R.: Least-squares fitting of circles and ellipses. BIT Numer. Math. 34(4), 558–578 (1994)
Halır, R., Flusser, J.: Numerically stable direct least squares fitting of ellipses. In: Proceedings of the 6th International Conference in Central Europe on Computer Graphics and Visualization. WSCG, vol. 98, pp. 125–132. Citeseer (1998)
Hu, C., Wang, G., Ho, K.C., Liang, J.: Robust ellipse fitting with Laplacian kernel based maximum correntropy criterion. IEEE Trans. Image Process. 30, 3127–3141 (2021). https://doi.org/10.1109/TIP.2021.3058785
Jin, P., Matikainen, P., Srinivasa, S.S.: Sensor fusion for fiducial tags: highly robust pose estimation from single frame RGBD. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5770–5776 (2017)
Li, Z., et al.: Fast vision-based autonomous detection of moving cooperative target for unmanned aerial vehicle landing. J. Field Robot. 36(1), 34–48 (2019)
Maini, E.S.: Enhanced direct least square fitting of ellipses. Int. J. Pattern Recogn. Artif. Intell. 20(06), 939–953 (2006)
Meng, C., Li, Z., Bai, X., Zhou, F.: Arc adjacency matrix-based fast ellipse detection. IEEE Trans. Image Process. 29, 4406–4420 (2020)
Meng, C., Li, Z., Sun, H., Yuan, D., Bai, X., Zhou, F.: Satellite pose estimation via single perspective circle and line. IEEE Trans. Aerosp. Electron. Syst. 54(6), 3084–3095 (2018)
Mulleti, S., Seelamantula, C.S.: Ellipse fitting using the finite rate of innovation sampling principle. IEEE Trans. Image Process. 25(3), 1451–1464 (2016). https://doi.org/10.1109/TIP.2015.2511580
Pătrăucean, V., Gurdjos, P., von Gioi, R.G.: A parameterless line segment and elliptical arc detector with enhanced ellipse fitting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 572–585. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_41
Prasad, D.K., Leung, M.K.H., Cho, S.Y.: Edge curvature and convexity based ellipse detection method. Pattern Recogn. 45(9), 3204–3221 (2012)
Prasad, D.K., Leung, M.K., Quek, C.: ElliFit: an unconstrained, non-iterative, least squares based geometric ellipse fitting method. Pattern Recogn. 46(5), 1449–1465 (2013). https://doi.org/10.1016/j.patcog.2012.11.007
Rosin, P.L.: A note on the least squares fitting of ellipses. Pattern Recogn. Lett. 14(10), 799–808 (1993)
Safaee-Rad, R., Tchoukanov, I., Smith, K.C., Benhabib, B.: Three-dimensional location estimation of circular features for machine vision. IEEE Trans. Robot. Autom. 8(5), 624–640 (1992)
Szpak, Z.L., Chojnacki, W., van den Hengel, A.: Guaranteed ellipse fitting with the Sampson distance. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 87–100. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_7
Szpak, Z.L., Chojnacki, W., Hengel, A.V.D.: Guaranteed ellipse fitting with a confidence region and an uncertainty measure for centre, axes, and orientation. J. Math. Imaging Vis. 52(2), 173–199 (2015)
Waibel, P., Matthes, J., Gröll, L.: Constrained ellipse fitting with center on a line. J. Math. Imaging Vis. 53(3), 364–382 (2015)
Yang, J., Gao, X., Li, Z., Li, S., Liang, B.: Pose measurement for capture of large satellite docking ring based on double-line structured light vision. In: Proceedings of the 2017 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017), pp. 1336–1345. Atlantis Press, May 2017
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, Z., Meng, C., Li, D., Liu, L. (2021). Robust Ellipse Fitting with an Auxiliary Normal. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12888. Springer, Cham. https://doi.org/10.1007/978-3-030-87355-4_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-87355-4_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87354-7
Online ISBN: 978-3-030-87355-4
eBook Packages: Computer ScienceComputer Science (R0)