Skip to main content

Achieving Lightweight Image Steganalysis with Content-Adaptive in Spatial Domain

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12888))

Included in the following conference series:

  • 1945 Accesses

Abstract

Steganography is a technology that modifies complex regions of digital images to embed secret messages for the purpose of covert communication, while steganalysis is to detect whether secret messages are hidden in a digital image or not. However, the emergence of content-adaptive steganography such as S-UNIWARD prioritizes the embedding of secret messages in areas of textural complexity of images by embedding probability map guidelines. Such ways dramatically improve the security of steganography and impede the process of image steganalysis. Most of the existing steganalysis studies are aimed at improving the network structure to enhance the detection performance of the model, without considering the generation of embedding probability maps which can guide the training of the network model, eliminate some unnecessary distractions, shorten the training time and improve the final detection accuracy simultaneously. Therefore, how to obtain embedded probability maps and use them effectively becomes an important challenge in the field of steganalysis. In this paper, to solve the above problem we propose a content-adaptive lightweight network to implement an embedded probability map combined with steganalysis. Our steganalysis model includes two parts: embedding probability maps generation module and features processing module, which is trained Separately. The generation module adopts the basic framework and modifies the model to make it more suitable for steganography. In the features processing module, we adopt a pseudo-siamese architecture to manipulate two different input images. Next, we use the attention mechanism to assign weights to channel parameters. Finally, We use a simple data augmentation method to enhance our training dataset and improve final performance. Because our proposed model incorporates embedded probability maps as guidelines, experiments show that our proposed CNet has faster convergence speed, higher detection accuracy, and better robustness compared to networks such as Yedroudj-Net, SRNet, and Zhu-Net in the spatial domain.

Supported by Foundation item: National Key Research and Development Program of China (2018YFB1003205); National Natural Science Foundation of China (U1836110, U1836208); by the Jiangsu Basic Research Programs-Natural Science Foundation under grant numbers BK20200039.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bas, P., Filler, T., Pevný, T.: “Break our steganographic system’’: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_5

    Chapter  Google Scholar 

  2. Boroumand, M., Chen, M., Fridrich, J.: Deep residual network for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 14(5), 1181–1193 (2018)

    Article  Google Scholar 

  3. Chandramouli, R., Memon, N.: Analysis of LSB based image steganography techniques. In: Proceedings 2001 International Conference on Image Processing (Cat. No. 01CH37205), vol. 3, pp. 1019–1022. IEEE (2001)

    Google Scholar 

  4. Chaumont, M.: Deep learning in steganography and steganalysis. In: Digital Media Steganography, pp. 321–349. Elsevier (2020)

    Google Scholar 

  5. Denemark, T., Fridrich, J., Comesaña-Alfaro, P.: Improving selection-channel-aware steganalysis features. Electron. Imaging 2016(8), 1–8 (2016)

    Article  Google Scholar 

  6. Denemark, T., Sedighi, V., Holub, V., Cogranne, R., Fridrich, J.: Selection-channel-aware rich model for steganalysis of digital images. In: 2014 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 48–53. IEEE (2014)

    Google Scholar 

  7. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  8. Goljan, M., Fridrich, J., Cogranne, R.: Rich model for steganalysis of color images. In: 2014 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 185–190. IEEE (2014)

    Google Scholar 

  9. Ker, A.D.: Steganalysis of LSB matching in grayscale images. IEEE Signal Process. Lett. 12(6), 441–444 (2005)

    Article  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Pevny, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 5(2), 215–224 (2010)

    Article  Google Scholar 

  12. Qian, Y., Dong, J., Wang, W., Tan, T.: Deep learning for steganalysis via convolutional neural networks. In: Media Watermarking, Security, and Forensics 2015, vol. 9409, p. 94090J. International Society for Optics and Photonics (2015)

    Google Scholar 

  13. Tan, S., Li, B.: Stacked convolutional auto-encoders for steganalysis of digital images. In: Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific. pp. 1–4. IEEE (2014)

    Google Scholar 

  14. Tang, W., Li, H., Luo, W., Huang, J.: Adaptive steganalysis based on embedding probabilities of pixels. IEEE Trans. Inf. Forensics Secur. 11(4), 734–745 (2015)

    Google Scholar 

  15. Xu, G., Wu, H.Z., Shi, Y.Q.: Structural design of convolutional neural networks for steganalysis. IEEE Signal Process. Lett. 23(5), 708–712 (2016)

    Article  Google Scholar 

  16. Yang, J., Liu, K., Kang, X., Wong, E., Shi, Y.: Steganalysis based on awareness of selection-channel and deep learning. In: Kraetzer, C., Shi, Y.-Q., Dittmann, J., Kim, H.J. (eds.) IWDW 2017. LNCS, vol. 10431, pp. 263–272. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64185-0_20

    Chapter  Google Scholar 

  17. Ye, J., Ni, J., Yi, Y.: Deep learning hierarchical representations for image steganalysis. IEEE Trans. Inf. Forensics Secur. 12(11), 2545–2557 (2017)

    Article  Google Scholar 

  18. Yedroudj, M., Comby, F., Chaumont, M.: Yedroudj-net: an efficient CNN for spatial steganalysis. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2092–2096. IEEE (2018)

    Google Scholar 

  19. You, W., Zhang, H., Zhao, X.: A Siamese CNN for image steganalysis. IEEE Trans. Inf. Forensics Secur. 16, 291–306 (2020)

    Article  Google Scholar 

  20. Zhang, R., Zhu, F., Liu, J., Liu, G.: Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-based steganalysis. IEEE Trans. Inf. Forensics Secur. 15, 1138–1150 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangjie Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Fu, Z., Sun, X., Li, E. (2021). Achieving Lightweight Image Steganalysis with Content-Adaptive in Spatial Domain. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12888. Springer, Cham. https://doi.org/10.1007/978-3-030-87355-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87355-4_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87354-7

  • Online ISBN: 978-3-030-87355-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics