Skip to main content

Cross-Domain Transfer Learning for Vessel Segmentation in Computed Tomographic Coronary Angiographic Images

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12889))

Included in the following conference series:

Abstract

Segmenting coronary arteries in computed tomographic angiography images is an essential procedure for coronary artery disease diagnosis. However, it still remains challenging due to the insufficient annotation data for supervised deep learning methods. To solve this problem, we propose a novel cross-domain transfer learning network to adaptively transfer knowledge learned from public liver vessel dataset for coronary artery segmentation. The signed distance map learning task is joined to enforce the network to transfer tubular structure knowledge from the liver vessel. Moreover, an adaptive feature-selection module is used to determine the optimal fine-tune strategy for every target sample. We conduct ablation experiments to demonstrate the effectiveness of the auxiliary task and module. We also compare the proposed method with other state-of-the-art transfer learning and segmentation methods. Results showed that our method achieve the best performance on accurate coronary artery segmentation. Our method achieves the best Dice score of 81.60%, an improvement of at least 1% with respect to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, W., Lu, H., Lin, Z., Su, H., Liang, Z.: Coronary artery segmentation by deep learning neural networks on computed tomographic coronary angiographic images. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2018)

    Google Scholar 

  2. Meinel, F.G., Ii, R.B., Zwerner, P.L., Cecco, C.D., Schoepf, U.J.: Coronary computed tomographic angiography in clinical practice: state of the art. Radiol. Clin. North Am. 53, 287–296 (2015)

    Article  Google Scholar 

  3. Zhao, J., et al.: Automatic Segmentation and Reconstruction of Coronary Arteries Based on Sphere Model and Hessian Matrix using CCTA Images. J. Phys.: Conf. Ser. 1213, 042049 (2019). https://doi.org/10.1088/1742-6596/1213/4/042049

  4. Zhou, C., et al.: Automated coronary artery tree extraction in coronary CT angiography using a multiscale enhancement and dynamic balloon tracking (MSCAR-DBT) method. Comput. Med. Imaging Graph. 36, 1 (2012). https://doi.org/10.1016/j.compmedimag.2011.04.001

    Article  Google Scholar 

  5. Tian, Y., Pan, Y., Duan, F., Zhao, S., Wang, Q., Wang, W.: Automated segmentation of coronary arteries based on statistical region growing and heuristic decision method. Biomed. Res. Int. 2016, 1–7 (2016). https://doi.org/10.1155/2016/3530251

    Article  Google Scholar 

  6. Chen, Y., Cao, Q., Zhuang, Z., Yang, Z., Luo, L., Toumoulin, C.: 3-D coronary vessel extraction using a novel minimum path based region growing. In: Kamel, M., Campilho, A. (eds.) ICIAR 2013. LNCS, vol. 7950, pp. 502–509. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39094-4_57

    Chapter  Google Scholar 

  7. Taghizadeh Dehkordi, M., Doost Hoseini, A.M., Sadri, S., Soltanianzadeh, H.: Local feature fitting active contour for segmenting vessels in angiograms. IET Comput. Vision 8, 161–170 (2014). https://doi.org/10.1049/iet-cvi.2013.0083

    Article  Google Scholar 

  8. Sun, K., Chen, Z., Jiang, S.: Local morphology fitting active contour for automatic vascular segmentation. IEEE Trans. Biomed. Eng. 59, 464–473 (2012). https://doi.org/10.1109/TBME.2011.2174362

    Article  Google Scholar 

  9. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Milletari, _F_, Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV) (2016)

    Google Scholar 

  12. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J.N., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Med. Image Anal. 63, 101693 (2020). https://doi.org/10.1016/j.media.2020.101693

  13. Sirinukunwattana, K., et al.: Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 35, 489–502 (2017). https://doi.org/10.1016/j.media.2016.08.008

    Article  Google Scholar 

  14. Yu, F., et al.: Annotation-free cardiac vessel segmentation via knowledge transfer from retinal images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 714–722. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_79

    Chapter  Google Scholar 

  15. Tang, Y., et al.: CT image enhancement using stacked generative adversarial networks and transfer learning for lesion segmentation improvement. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 46–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_6

    Chapter  Google Scholar 

  16. Fu, C., et al.: Three dimensional fluorescence microscopy image synthesis and segmentation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). pp. 2302–23028. IEEE, Salt Lake City, UT (2018). https://doi.org/10.1109/CVPRW.2018.00298

  17. Shin, H.-C., et al.: Deep convolutional neural networks for computer-aided detection: cnn architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging. 35, 1285–1298 (2016). https://doi.org/10.1109/TMI.2016.2528162

    Article  Google Scholar 

  18. Tajbakhsh, N., et al.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging. 35, 1299–1312 (2016). https://doi.org/10.1109/TMI.2016.2535302

    Article  Google Scholar 

  19. Chen, S., Ma, K., Zheng, Y.: Med3D: Transfer Learning for 3D Medical Image Analysis (2019)

    Google Scholar 

  20. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv:1902.09063 [cs, eess] (2019)

  21. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. pp. 580–587. IEEE, Columbus, OH, USA (2014). https://doi.org/10.1109/CVPR.2014.81

  22. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? Eprint Arxiv. 27, 3320–3328 (2014)

    Google Scholar 

  23. Xue, Y., et al.: Shape-Aware Organ Segmentation by Predicting Signed Distance Maps. arXiv:1912.03849 [cs] (2019)

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 770–778. IEEE, Las Vegas, NV, USA (2016). https://doi.org/10.1109/CVPR.2016.90

  25. Maddison, C.J., Mnih, A., Teh, Y.W.: The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. ICLR (2017)

    Google Scholar 

  26. Guo, Y., Shi, H., Kumar, A., Grauman, K., Feris, R.: SpotTune: transfer learning through adaptive fine-tuning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  27. Danielsson, P.-E.: Euclidean distance mapping. Comput. Graph. Image Process. 14, 227–248 (1980). https://doi.org/10.1016/0146-664X(80)90054-4

    Article  Google Scholar 

  28. Amiri, M., Brooks, R., Rivaz, H.: Fine-tuning U-Net for ultrasound image segmentation: different layers, different outcomes. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 67, 2510–2518 (2020). https://doi.org/10.1109/TUFFC.2020.3015081

Download references

Acknowledgements

This work was supported by the National Science Foundation Program of China [62071048, 61901031, 61971040].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danni Ai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

An, R., Han, T., Wang, Y., Ai, D., Wang, Y., Yang, J. (2021). Cross-Domain Transfer Learning for Vessel Segmentation in Computed Tomographic Coronary Angiographic Images. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12889. Springer, Cham. https://doi.org/10.1007/978-3-030-87358-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87358-5_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87357-8

  • Online ISBN: 978-3-030-87358-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics