Abstract
This paper introduces a six degree-of-freedom (6DoF) pose estimation method for manipulating robots to construct a robust machine-vision system. Generally, 2DoF results obtained by traditional object detectors cannot meet the requirements of manipulating operations, where the posture of targets are additionally needed. Meanwhile, due to the sensitivity to light and the limitation to distance, the depth sensor of RGB-D cameras could not always be reliable. To overcome these problems, we study 6DoF pose estimation from a single RGB image. To reduce the complexity and computation, we divide the task into four stages, i.e., data collection and pre-processing, instance segmentation, keypoints prediction, and 2D-to-3D projection. We build the model with deep neural networks, and test it in practical manipulating tasks. The experimental results demonstrate the high accuracy and practicality of our method.
This research was funded by China Postdoctoral Science Foundation under grant 2020M672529, and China Southern Power Grid Science and Technology Project under grant GDKJXM20192276, GDKJXM20184840 and NYJS2020KJ005-12.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cao, Y., Ju, L., Zou, Q., Qu, C., Wang, S.: A multichannel edge-weighted centroidal voronoi tessellation algorithm for 3D super-alloy image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 17–24 (2011)
Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3150–3158 (2016)
Dian, S., Liu, T., Liang, Y., Liang, M., Zhen, W.: A novel shrimp rover-based mobile robot for monitoring tunnel power cables. In: 2011 IEEE International Conference on Mechatronics and Automation. pp. 887–892. IEEE (2011)
Fan, F., Wu, G., Wang, M., Cao, Q., Yang, S.: Multi-robot cyber physical system for sensing environmental variables of transmission line. Sensors 18(9), 3146 (2018)
Griepentrog, H.W., Jaeger-Hansen, C.L., Dühring, K., et al.: Electric agricultural robot with multi-layer-control. In: Proceedings of International Conference of Agricultural Engineering (2012)
Hinterstoisser, S., et al.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, Kyoung Mu, Matsushita, Yasuyuki, Rehg, James M.., Hu, Zhanyi (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_42
Kaskman, R., Zakharov, S., Shugurov, I., Ilic, S.: HomebrewedDB: RGB-D dataset for 6d pose estimation of 3d objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)
Kehl, W., Manhardt, F., Tombari, F., Ilic, S., Navab, N.: SSD-6D: making RGB-based 3D detection and 6D pose estimation great again. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1521–1529 (2017)
Lepetit, V., Moreno-Noguer, F., Fua, P.: EPNP: an accurate o(n) solution to the PNP problem. Int. J. Comput. Vis. 81(2), 155 (2009)
Li, Yi., Wang, Gu., Ji, Xiangyang, Xiang, Yu., Fox, Dieter: DeepIM: deep iterative matching for 6D pose estimation. Int. J. Comput. Vis. 128(3), 657–678 (2019). https://doi.org/10.1007/s11263-019-01250-9
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)
Lu, S., Zhang, Y., Su, J.: Mobile robot for power substation inspection: a survey. IEEE/CAA J. Automatica Sinica 4(4), 830–847 (2017)
Ng, P.C., Henikoff, S.: SIFT: predicting amino acid changes that affect protein function. Nucleic acids Res. 31(13), 3812–3814 (2003)
Pavlakos, G., Zhou, X., Chan, A., Derpanis, K.G., Daniilidis, K.: 6-DoF object pose from semantic keypoints. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2011–2018. IEEE (2017)
Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: PVNet: pixel-wise voting network for 6DoF pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4561–4570 (2019)
Rad, M., Lepetit, V.: BB8: a scalable, accurate, robust to partial occlusion method for predicting the 3D poses of challenging objects without using depth. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3828–3836 (2017)
Song, Y., Wang, H., Jiang, Y., Ling, L.: AApe-D: a novel power transmission line maintenance robot for broken strand repair. In: 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI), pp. 108–113. IEEE (2012)
Tekin, B., Sinha, S.N., Fua, P.: Real-time seamless single shot 6D object pose prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 292–301 (2018)
Wang, B., Chen, X., Wang, Q., Liu, L., Zhang, H., Li, B.: Power line inspection with a flying robot. In: 2010 1st International Conference on Applied Robotics for the Power Industry, pp. 1–6. IEEE (2010)
Wu, Y., Hu, Z.: PnP problem revisited. J. Math. Imag. Vis. 24(1), 131–141 (2006)
Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199 (2017)
Zhang, X., Ma, Y., Fan, F., Zhang, Y., Huang, J.: Infrared and visible image fusion via saliency analysis and local edge-preserving multi-scale decomposition. JOSA A 34(8), 1400–1410 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Du, S., Zhang, X., Li, Z., Yue, J., Zou, Q. (2021). Object 6DoF Pose Estimation for Power Grid Manipulating Robots. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12889. Springer, Cham. https://doi.org/10.1007/978-3-030-87358-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-87358-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87357-8
Online ISBN: 978-3-030-87358-5
eBook Packages: Computer ScienceComputer Science (R0)