Skip to main content

Object 6DoF Pose Estimation for Power Grid Manipulating Robots

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Abstract

This paper introduces a six degree-of-freedom (6DoF) pose estimation method for manipulating robots to construct a robust machine-vision system. Generally, 2DoF results obtained by traditional object detectors cannot meet the requirements of manipulating operations, where the posture of targets are additionally needed. Meanwhile, due to the sensitivity to light and the limitation to distance, the depth sensor of RGB-D cameras could not always be reliable. To overcome these problems, we study 6DoF pose estimation from a single RGB image. To reduce the complexity and computation, we divide the task into four stages, i.e., data collection and pre-processing, instance segmentation, keypoints prediction, and 2D-to-3D projection. We build the model with deep neural networks, and test it in practical manipulating tasks. The experimental results demonstrate the high accuracy and practicality of our method.

This research was funded by China Postdoctoral Science Foundation under grant 2020M672529, and China Southern Power Grid Science and Technology Project under grant GDKJXM20192276, GDKJXM20184840 and NYJS2020KJ005-12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, Y., Ju, L., Zou, Q., Qu, C., Wang, S.: A multichannel edge-weighted centroidal voronoi tessellation algorithm for 3D super-alloy image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 17–24 (2011)

    Google Scholar 

  2. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3150–3158 (2016)

    Google Scholar 

  3. Dian, S., Liu, T., Liang, Y., Liang, M., Zhen, W.: A novel shrimp rover-based mobile robot for monitoring tunnel power cables. In: 2011 IEEE International Conference on Mechatronics and Automation. pp. 887–892. IEEE (2011)

    Google Scholar 

  4. Fan, F., Wu, G., Wang, M., Cao, Q., Yang, S.: Multi-robot cyber physical system for sensing environmental variables of transmission line. Sensors 18(9), 3146 (2018)

    Article  Google Scholar 

  5. Griepentrog, H.W., Jaeger-Hansen, C.L., Dühring, K., et al.: Electric agricultural robot with multi-layer-control. In: Proceedings of International Conference of Agricultural Engineering (2012)

    Google Scholar 

  6. Hinterstoisser, S., et al.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, Kyoung Mu, Matsushita, Yasuyuki, Rehg, James M.., Hu, Zhanyi (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_42

    Chapter  Google Scholar 

  7. Kaskman, R., Zakharov, S., Shugurov, I., Ilic, S.: HomebrewedDB: RGB-D dataset for 6d pose estimation of 3d objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  8. Kehl, W., Manhardt, F., Tombari, F., Ilic, S., Navab, N.: SSD-6D: making RGB-based 3D detection and 6D pose estimation great again. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1521–1529 (2017)

    Google Scholar 

  9. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPNP: an accurate o(n) solution to the PNP problem. Int. J. Comput. Vis. 81(2), 155 (2009)

    Article  Google Scholar 

  10. Li, Yi., Wang, Gu., Ji, Xiangyang, Xiang, Yu., Fox, Dieter: DeepIM: deep iterative matching for 6D pose estimation. Int. J. Comput. Vis. 128(3), 657–678 (2019). https://doi.org/10.1007/s11263-019-01250-9

    Article  Google Scholar 

  11. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  12. Lu, S., Zhang, Y., Su, J.: Mobile robot for power substation inspection: a survey. IEEE/CAA J. Automatica Sinica 4(4), 830–847 (2017)

    Article  Google Scholar 

  13. Ng, P.C., Henikoff, S.: SIFT: predicting amino acid changes that affect protein function. Nucleic acids Res. 31(13), 3812–3814 (2003)

    Article  Google Scholar 

  14. Pavlakos, G., Zhou, X., Chan, A., Derpanis, K.G., Daniilidis, K.: 6-DoF object pose from semantic keypoints. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2011–2018. IEEE (2017)

    Google Scholar 

  15. Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: PVNet: pixel-wise voting network for 6DoF pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4561–4570 (2019)

    Google Scholar 

  16. Rad, M., Lepetit, V.: BB8: a scalable, accurate, robust to partial occlusion method for predicting the 3D poses of challenging objects without using depth. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3828–3836 (2017)

    Google Scholar 

  17. Song, Y., Wang, H., Jiang, Y., Ling, L.: AApe-D: a novel power transmission line maintenance robot for broken strand repair. In: 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI), pp. 108–113. IEEE (2012)

    Google Scholar 

  18. Tekin, B., Sinha, S.N., Fua, P.: Real-time seamless single shot 6D object pose prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 292–301 (2018)

    Google Scholar 

  19. Wang, B., Chen, X., Wang, Q., Liu, L., Zhang, H., Li, B.: Power line inspection with a flying robot. In: 2010 1st International Conference on Applied Robotics for the Power Industry, pp. 1–6. IEEE (2010)

    Google Scholar 

  20. Wu, Y., Hu, Z.: PnP problem revisited. J. Math. Imag. Vis. 24(1), 131–141 (2006)

    Article  MathSciNet  Google Scholar 

  21. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199 (2017)

  22. Zhang, X., Ma, Y., Fan, F., Zhang, Y., Huang, J.: Infrared and visible image fusion via saliency analysis and local edge-preserving multi-scale decomposition. JOSA A 34(8), 1400–1410 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, S., Zhang, X., Li, Z., Yue, J., Zou, Q. (2021). Object 6DoF Pose Estimation for Power Grid Manipulating Robots. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12889. Springer, Cham. https://doi.org/10.1007/978-3-030-87358-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87358-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87357-8

  • Online ISBN: 978-3-030-87358-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics