Abstract
Deep Learning (DL) can be used to model the process of No Reference-Image Quality Assessment (NR-IQA), which has a great contribution to the field of image processing. Even though, a large number of super parameters make the computational complexity gradually increase. Surprisingly, Broad Learning System (BLS) can transform the deep structure of DL into a flat and visual network structure, which reduces the difficulty for practical applications. By applying BLS in NR-IQA, combining the structural and statistical features of the image to reflect the image quality, which expands the research of NR-IQA undoubtedly. In this paper, the mathematical relationship between the image and the score is modeled by BLS, the effectiveness of the proposed method is demonstrated in the numerical experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liu, L., Hua, Y., Zhao, Q., Huang, H, Bovik, A.C.: Blind image quality assessment by relative gradient statistics and AdaBoosting neural network[J]. Signal Process Image Commun. 40(C), 1–15 (2016)
Bianco, S., Celona, L., Napoletano, P., Schettini, R.: On the use of deep learning for blind image quality assessment[J]. SIViP 12(2), 355–362 (2018)
Gao, F., Yu, J.: Blind image quality prediction by exploiting multi-level deep representations[J]. Pattern Recogn. 81, 432–442 (2018)
Fang, Y., Zhang, C., Yang, W., Liu, J., Guo, Z.: Blind visual quality assessment for image super-resolution by convolutional neural network[J]. Multimedia Tools Appl. 77(22), 29829–29846 (2018)
Fang, Y.M., Yan, J.B.: Stereoscopic image quality assessment by deep convolutional neural network[J]. J. Vis. Commun. Image Represent. 58, 400–406 (2019)
Jia, S., Zhang, Y.: Saliency-based deep convolutional neural network for no-reference image quality assessment[J]. Multimedia Tools Appl. 77(12), 14859–14872 (2018)
Yang, J.C., Zhao, Y., Zhu, Y.H., Xua, H.F., Lu, W., Meng, Q.G.: Blind assessment for stereo images considering binocular characteristics and deep perception map based on deep belief network[J]. Inf. Sci. 474, 1–17 (2019)
Ji, W.P., Wu, J.J., Shi, G.M., Wan, W.F., Xie, X.M.: Blind image quality assessment with semantic information[J]. J. Vis. Commun. Image Represent 58, 195–204 (2019)
Wu, J., Zeng, J., Liu, Y., Shi, G.M.: Hierarchical feature degradation based blind image quality assessment[C]. In: IEEE International Conference on Computer Vision Workshop (2017)
Gao, F., Wang, Y., Li, P.P., Tan, M., Yu, J., Zhu, Y.: DeepSim: deep similarity for image quality assessment [J]. Neuro comput. 257, 104–114 (2017)
Yang, Y., Cheng, G., Yu, D.H., Ye, R.Z.: Blind image quality assessment via content-invariant statistical feature[J]. Optik 138, 21–32 (2017)
Lin, K.Y., Wang, G.: Hallucinated-IQA: no-reference image quality assessment via adversarial learning[J]. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 732–741 (2018)
Ren, H., Chen, D., Wang, Y.: RAN4IQA: Restorative adversarial nets for no-reference image quality assessment[C]. arXiv preprint arXiv:1712.05444 (2017)
Lim, H.T., Kim, H.G., Ro, Y.M.: VR IQA NET: deep virtual reality image quality assessment using adversarial learning[C]. In: IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 6737–6741 (2018)
Pan, D., Shi, P., Hou, M., Ying, Z.F., Fu, S.Z., Zhang, Y.: Blind predicting similar quality map for image quality assessment[C]. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6373–6382 (2018)
Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets[J]. Neural Comput. 18(7), 1527–1554 (2006)
Hinton, G.E., Sejnowski, T.J.: Learning and relearning in Boltzmann Machines[J]. Parallel Distrib. Process. Explor. Microstruct. Cogn. 1, 282–317 (1986)
Pao, Y.H., Takefuji, Y.: Functional-link net computing: theory, system architecture, and functionalities[J]. Computer 25(5), 76–79 (1992)
Pao, Y.H., Park, G.H., Sobajic, D.J.: Learning and generalization characteristics of the random vector functional-link net[J]. Neurocomputing 6(2), 163–180 (1994)
Igelnik, B., Pao, Y.H.: Stochastic choice of basis functions in adaptive function approximation and the functional-link net[J]. IEEE Trans. Neural Netw. Learn. Syst. 6(6), 1320–1329 (1995)
Chen, C.L.P., Wan, J.Z.: A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction[J]. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 29(1), 62–72 (1999)
Chen, C.L.P., Liu, Z.: Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Trans. Neural Netw. Learn. Syst. 29(1), 10–24 (2018)
Shuang, F., Chen, C.L.P.: Fuzzy broad learning system: a novel neuro-fuzzy model for regression and classification[J]. IEEE Trans. Cybern., 1–11 (2018)
Xue, W., Mou, X., Zhang, L., Bovik, A.C., Feng, X.C., et al.: Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features[J]. IEEE Trans. Image Process. 23(11), 4850–4862 (2014)
Geusebroek, J.M., Smeulders, A.: A six-stimulus theory for stochastic texture[J]. Int. J. Comput. Vision 62(1–2), 7–16 (2005)
Huang, J.G., Mumford, D.: Statistics of natural images and models[C]. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (1999)
Ruderman, D.L.: The statistics of natural images[J]. Netw. Comput. Neural Syst. 5(4), 517–548 (1994)
Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: LIVE image quality assessment database release 2. http://live.ece.utexas.edu/research/quality. 4 February 2015
Larson, E.C., Chandler, D.M.: Most apparent distortion: full reference image quality assessment and the role of strategy[J]. J. Electron. Imaging 19(011006), 1–21 (2010)
Ponomarenko, N., Lukin, V., Zelensky, A.: TID2008 a database for evaluation of full-reference visual quality assessment metrics[J]. Adv. Modern Radio Electr. 1(10), 30–45 (2009)
Ponomarenko, N., Jin, L., Leremeiev, O., Lukin, V., Egiazarian, K., Astola, J., et al.: Image database TID2013: peculiarities, results and perspectives[J]. Signal Process. Image Commun. 1(30), 55–77 (2015)
Wang, Z., Bovik, A.C., Lu, L.G.: Why is image quality assessment so difficult?[C]. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 3313–3316 (2002)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Zhang, L., Zhang, L., Mou, X.Q., Zhang, D.: FSIM: a feature similarity index for image quality assessment[J]. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)
Moorthy, A.K., Bovik, A.C.: A two-step framework for constructing blind image quality indices[J]. IEEE Signal Process. Lett. 17(5), 513–516 (2010)
Moorthy, A.K., Bovik, A.C.: Blind image quality assessment: from natural scene statistics to perceptual quality[J]. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)
Saad, M.A., Bovik, A.C., Charrier, C.: Blind image quality assessment: a natural scene statistics approach in the DCT domain[J]. IEEE Trans. Image Process. 21(8), 3339–3352 (2012)
Ye, P., Kumar, J., Kang, L., Doermann, D.: Unsupervised feature learning framework for no-reference image quality assessment[C]. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)
Acknowledgments
This work was supported in part by the National Natural Science Foundation of China (Grant No. 62061040, 51769026); the Major Innovation Projects for Building First-class Universities in China’s Western Region (Grant No. ZKZD2017009); the Natural Science Foundation of Ningxia (Grant No. 2018AAC03014) and the Postgraduate Innovation Project of Ningxia University ( No. GIP2019011).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Yue, J., liu, G., Huang, L. (2021). No-Reference Image Quality Assessment via Broad Learning System. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12890. Springer, Cham. https://doi.org/10.1007/978-3-030-87361-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-87361-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87360-8
Online ISBN: 978-3-030-87361-5
eBook Packages: Computer ScienceComputer Science (R0)