Skip to main content

A Multi-path Neural Network for Hyperspectral Image Super-Resolution

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12890))

Included in the following conference series:

  • 2222 Accesses

Abstract

The resolution of hyperspectral remote sensing images is largely limited by the cost and commercialization requirements of remote sensing satellites. Existing super-resolution methods for improving the spatial resolution of images cannot well integrate the correlation between spectral segments and the problem of excessive network parameters caused by high-dimensional characteristics. This paper studies a multipath-based residual feature learning method, which simplifies each part of the network into several simple and effective network modules to learn the spatial spectral features between different spectral segments. Through the designed multi-scale feature generation method based on wavelet transform and spatial attention mechanism, the non-linear mapping ability for features is effectively improved. The verification of three general hyperspectral data sets proves the superiority of this method compared with the existing hyperspectral SR methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Son, S., Wang, M.: Ice detection for satellite ocean color data processing in the Great Lakes. IEEE Trans. Geosci. Remote Sens. 55(12), 6793–6804 (2017)

    Article  Google Scholar 

  2. Song, J., Jeong, J.H., Park, D.S., Kim, H.H., Seo, D.C., Ye, J.C.: Unsupervised denoising for satellite imagery using wavelet directional CycleGAN. IEEE Trans. Geosci. Remote Sens., 1–17 (2020)

    Google Scholar 

  3. Lee, J.H., Lee, S.S., Kim, H.G., Song, S.K., Kim, S., Ro, Y.M.: MCSIP net: multichannel satellite image prediction via deep neural network. IEEE Trans. Geosci. Remote Sens. 58(3), 2212–2224 (2019)

    Article  Google Scholar 

  4. Liu, X., Wang, M.: Super-resolution of VIIRS-measured ocean color products using deep convolutional neural network. IEEE Trans. Geosci. Remote Sens. 59(1), 114–127 (2020)

    Article  Google Scholar 

  5. Jalal, R., et al.: Toward efficient land cover mapping: an overview of the national land representation system and land cover map 2015 of Bangladesh. IEEE J. Selected Topics Appl. Earth Observ. Remote Sens. 12(10), 3852–3861(2019)

    Google Scholar 

  6. Zhang, P., et al.: Monitoring of drought change in the middle reach of yangtze river. In: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 4935–4938. IEEE (2018)

    Google Scholar 

  7. Goetzke, R., Braun, M., Thamm, H. P., Menz, G.: Monitoring and modeling urban land-use change with multitemporal satellite data. In: IGARSS 2008–2008 IEEE International Geoscience and Remote Sensing Symposium, Vol. 4, pp. IV-510. IEEE (2008)

    Google Scholar 

  8. Darweesh, M., Al Mansoori, S., AlAhmad, H.: Simple roads extraction algorithm based on edge detection using satellite images. In: 2019 IEEE 4th International Conference on Image, Vision and Computing, ICIVC, pp. 578–582. IEEE (2019)

    Google Scholar 

  9. Kussul, N., Shelestov, A., Yailymova, H., Yailymov, B., Lavreniuk, M., Ilyashenko, M.: Satellite agricultural monitoring in Ukraine at country level: world bank project. In: IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, pp. 1050–1053. IEEE (2020)

    Google Scholar 

  10. Di, Y., Xu, X., Zhang, G.: Research on secondary analysis method of synchronous satellite monitoring data of power grid wildfire. In: 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence, ICIBA, Vol. 1, pp. 706–710. IEEE (2020)

    Google Scholar 

  11. Hou, H., Andrews, H.: Cubic splines for image interpolation and digital filtering. IEEE Trans. Acoust. Speech Signal Process. 26(6), 508–517 (1978)

    Article  Google Scholar 

  12. Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10(10), 1521–1527 (2001)

    Article  Google Scholar 

  13. Dai, S., Han, M., Xu, W., Wu, Y., Gong, Y.: Soft edge smoothness prior for alpha channel super resolution. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  14. Timofte, R., De Smet, V., Van Gool, L.: Anchored neighborhood regression for fast example-based super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1920–1927 (2013)

    Google Scholar 

  15. Timofte, R., De Smet, V., Van Gool, L.: A+: Adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_8

    Chapter  Google Scholar 

  16. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  17. Zheng, W., et al.: Image super-resolution reconstruction algorithm based on Bayesian theory. In: 2018 13th IEEE Conference on Industrial Electronics and Applications, ICIEA, pp. 1934–1938. IEEE (2018)

    Google Scholar 

  18. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, CVPR 2016, pp. 1646–1654 (2016)

    Google Scholar 

  19. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR 2017, pp. 136–144 (2017)

    Google Scholar 

  20. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, pp. 1664–1673 (2018)

    Google Scholar 

  21. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019, pp. 11065–11074 (2019)

    Google Scholar 

  22. Mei, S., Yuan, X., Ji, J., Wan, S., Hou, J., Du, Q.: Hyperspectral image super-resolution via convolutional neural network. In: 2017 IEEE International Conference on Image Processing, ICIP, pp. 4297–4301. IEEE (2017)

    Google Scholar 

  23. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  24. Li, Q., Wang, Q., Li, X.: Exploring the relationship between 2D/3D convolution for hyperspectral image super-resolution. IEEE Trans. Geosci. Remote Sens. (2021)

    Google Scholar 

  25. Xie, W., Jia, X., Li, Y., Lei, J.: Hyperspectral image super-resolution using deep feature matrix factorization. IEEE Trans. Geosci. Remote Sens. 57(8), 6055–6067 (2019)

    Article  Google Scholar 

  26. Hu, J., Jia, X., Li, Y., He, G., Zhao, M.: Hyperspectral image super-resolution via intrafusion network. IEEE Trans. Geosci. Remote Sens. 58(10), 7459–7471 (2020)

    Article  Google Scholar 

  27. Li, Q., Wang, Q., Li, X.: Mixed 2D/3D convolutional network for hyperspectral image super-resolution. Remote Sens. 12(10), 1660 (2020)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of China under Grant 61801359, Grant 61571345 and the Pre-Research of the “Thirteenth Five-Year-Plan” of China Grant 305020903.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Wan, Z., Shao, M., Li, Y. (2021). A Multi-path Neural Network for Hyperspectral Image Super-Resolution. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12890. Springer, Cham. https://doi.org/10.1007/978-3-030-87361-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87361-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87360-8

  • Online ISBN: 978-3-030-87361-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics