Skip to main content

Bird Keypoint Detection via Exploiting 2D Texture and 3D Geometric Features

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12890))

Included in the following conference series:

  • 2222 Accesses

Abstract

Keypoint detection can help fine-grained bird recognition by aligning the bird with the detected keypoints. Most of the existing bird keypoint detection methods have poor performance on symmetric keypoints, because they mainly use texture features only, which usually can not distinguish between symmetric keypoints, such as the keypoints on left and right legs. Besides, these methods cannot deal well with the complex image background. Therefore, we propose a two-branch keypoint detection network that combines both 2D texture and 3D geometric features to tackle these problems. In the 2D branch, we use anchor loss to distinguish between foreground and background to alleviate the influence of complex background on keypoint detection. In the 3D branch, we introduce a 3D deformable mesh model to provide geometric information of symmetric keypoints. The prediction results of the two branches are fused to obtain the final keypoint detection results. We demonstrate the effectiveness of our proposed method on the widely-used CUB200-2011 [23] dataset. The experimental results show that our method can achieve superior accuracy in comparison with the state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Branson, S., Perona, P., Belongie, S.: Strong supervision from weak annotation: interactive training of deformable part models. In: Proceedings of the International Conference on Computer Vision, pp. 1832–1839. IEEE (2011)

    Google Scholar 

  2. Farrell, R., Oza, O., Zhang, N., Morariu, V.I., Darrell, T., Davis, L.S.: Birdlets: subordinate categorization using volumetric primitives and pose-normalized appearance. In: Proceedings of the International Conference on Computer Vision, pp. 161–168. IEEE (2011)

    Google Scholar 

  3. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2009)

    Article  Google Scholar 

  4. Guo, P., Farrell, R.: Aligned to the object, not to the image: a unified pose-aligned representation for fine-grained recognition. In: Proceedings of the Winter Conference on Applications of Computer Vision (WACV), pp. 1876–1885. IEEE (2019)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Hill, G.E., Hill, G.E., McGraw, K.J., Kevin, J., et al.: Bird Coloration: Function and Evolution, vol. 2. Harvard University Press (2006)

    Google Scholar 

  7. Huang, S., Gong, M., Tao, D.: A coarse-fine network for keypoint localization. In: Proceedings of the International Conference on Computer Vision, pp. 3028–3037 (2017)

    Google Scholar 

  8. Huang, S., Tao, D.: Real time fine-grained categorization with accuracy and interpretability. arXiv preprint arXiv:1610.00824 (2016)

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105 (2012)

    Google Scholar 

  10. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45

    Chapter  Google Scholar 

  11. Liu, J., Belhumeur, P.N.: Bird part localization using exemplar-based models with enforced pose and subcategory consistency. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2520–2527 (2013)

    Google Scholar 

  12. Liu, J., Kanazawa, A., Jacobs, D., Belhumeur, P.: Dog breed classification using part localization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 172–185. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_13

    Chapter  Google Scholar 

  13. Liu, J., Li, Y., Belhumeur, P.N.: Part-pair representation for part localization. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 456–471. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_30

    Chapter  Google Scholar 

  14. Liu, X., Wang, J., Wen, S., Ding, E., Lin, Y.: Localizing by describing: attribute-guided attention localization for fine-grained recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  15. Meena, S.D., Agilandeeswari, L.: An efficient framework for animal breeds classification using semi-supervised learning and multi-part convolutional neural network (MP-CNN). IEEE Access 7, 151783–151802 (2019)

    Article  Google Scholar 

  16. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  17. Ryou, S., Jeong, S.G., Perona, P.: Anchor loss: modulating loss scale based on prediction difficulty. In: Proceedings of the International Conference on Computer Vision, pp. 5992–6001 (2019)

    Google Scholar 

  18. Shih, K.J., Mallya, A., Singh, S., Hoiem, D.: Part localization using multi-proposal consensus for fine-grained categorization. In: Proceedings of the British Machine Vision Conference, pp. 128.1–128.12 (2015)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representations (2015)

    Google Scholar 

  20. Sun, S., Zhu, Z., Dai, X., Zhao, Q., Li, J.: Weakly-supervised reconstruction of 3D objects with large shape variation from single in-the-wild images. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  21. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the International Conference on Computer Vision, pp. 9627–9636 (2019)

    Google Scholar 

  22. Van De Sande, K., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1582–1596 (2009)

    Article  Google Scholar 

  23. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-UCSD birds-200-2011 dataset. Technical report (2011)

    Google Scholar 

  24. Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. In: CVPR 2011, pp. 1385–1392. IEEE (2011)

    Google Scholar 

  25. Yu, X., Zhou, F., Chandraker, M.: Deep deformation network for object landmark localization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 52–70. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_4

    Chapter  Google Scholar 

  26. Zhang, H., et al.: SPDA-CNN: unifying semantic part detection and abstraction for fine-grained recognition. In: Proceedings of the Computer Vision and Pattern Recognition, pp. 1143–1152 (2016)

    Google Scholar 

  27. Zhang, N., Farrell, R., Iandola, F., Darrell, T.: Deformable part descriptors for fine-grained recognition and attribute prediction. In: Proceedings of the International Conference on Computer Vision, pp. 729–736 (2013)

    Google Scholar 

  28. Zhang, N., Shelhamer, E., Gao, Y., Darrell, T.: Fine-grained pose prediction, normalization, and recognition. arXiv preprint arXiv:1511.07063 (2015)

  29. Zhu, P., Wang, H., Saligrama, V.: Generalized zero-shot recognition based on visually semantic embedding. In: Proceedings of the Computer Vision and Pattern Recognition, pp. 2995–3003 (2019)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (61773270, 61971005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pubu Danzeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, T., Zhao, Q., Danzeng, P. (2021). Bird Keypoint Detection via Exploiting 2D Texture and 3D Geometric Features. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12890. Springer, Cham. https://doi.org/10.1007/978-3-030-87361-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87361-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87360-8

  • Online ISBN: 978-3-030-87361-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics