Skip to main content

Visual Explanation by Unifying Adversarial Generation and Feature Importance Attributions

  • Conference paper
  • First Online:
Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data (IMIMIC 2021, TDA4MedicalData 2021)

Abstract

Explaining the decisions of deep learning models is critical for their adoption in medical practice. In this work, we propose to unify existing adversarial explanation methods and path-based feature importance attribution approaches. We consider a path between the input image and a generated adversary and associate a weight depending on the model output variations along this path. We validate our attribution methods on two medical classification tasks. We demonstrate significant improvement compared to state-of-the-art methods in both feature importance attribution and localization performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As in [3, 23], consider an encoder(E)-generator(G) architecture. E (resp. G) maps from (resp. to) the space of real images (\(\subset \mathbb {R}^n\)) to (resp. from) an encoding space (\(\subset \mathbb {R}^k\)). The real images path \(\gamma \) can for instance be defined as \(\gamma : \lambda \rightarrow G(z_{{\mathbf {x}}}+ \lambda (z_{{\mathbf {x_a}}}- z_{{\mathbf {x}}}))\), where \(z_{{\mathbf {x}}}= E({{\mathbf {x}}})\) and \(z_{{\mathbf {x_a}}}= E({{\mathbf {x_a}}})\). It follows that \(\frac{d {{\boldsymbol{\gamma }}}}{d \lambda } = \frac{\partial G}{\partial z}(z_{{\mathbf {x}}}+ \lambda (z_{{\mathbf {x_a}}}- z_{{\mathbf {x}}}))(z_{{\mathbf {x_a}}}- z_{{\mathbf {x}}})\). But \(\frac{\partial G}{\partial z}\) is a vector of dimension n.k which easily reaches a magnitude of \(10^9\) that is to be computed at several values of \(\lambda \).

References

  1. Bien, N., et al.: Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med. 15, 1002699 (2018)

    Google Scholar 

  2. Chang, C.H., Creager, E., Goldenberg, A., Duvenaud, D.K.: Explaining image classifiers by counterfactual generation. In: ICLR (2019)

    Google Scholar 

  3. Charachon, M., Cournède, P., Hudelot, C., Ardon, R.: Leveraging conditional generative models in a general explanation framework of classifier decisions. In: ArXiv (2021)

    Google Scholar 

  4. Charachon, M., Hudelot, C., Cournède, P.H., Ruppli, C., Ardon, R.: Combining similarity and adversarial learning to generate visual explanation: Application to medical image classification. In: ICPR (2020)

    Google Scholar 

  5. Dabkowski, P., Gal, Y.: Real time image saliency for black box classifiers. In: NIPS (2017)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  7. Elliott, A., Law, S., Russell, C.: Adversarial perturbations on the perceptual ball(2019). ArXiv arXiv:1912.09405

  8. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)

    Google Scholar 

  9. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: ICCV (2017)

    Google Scholar 

  10. Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., Lee, S.: Counterfactual visual explanations. In: ICML (2019)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: ECCV (2016)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  13. Lim, D., Lee, H., Kim, S.: Building reliable explanations of unreliable neural networks: locally smoothing perspective of model interpretation. In: CVPR (2021)

    Google Scholar 

  14. Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P., Zheng, Y.: Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90, 200–205 (2016). https://doi.org/10.1016/j.procs.2016.07.014, https://www.sciencedirect.com/science/article/pii/S1877050916311929, 20th Conference on Medical Image Understanding and Analysis (MIUA 2016)

  15. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: MICCAI (2015)

    Google Scholar 

  16. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat, Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  17. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.: Evaluating the visualization of what a deep neural network has learned. In: IEEE Transactions on Neural Networks and Learning Systems (2017)

    Google Scholar 

  18. Seah, J.C.Y., Tang, h.J.S.N., Kitchen, A., Gaillard, F., Dixon, A.F.: Chest radiographs in congestive heart failure: visualizing neural network learning. Radiology 290, 514-522 (2019)

    Google Scholar 

  19. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV (2017)

    Google Scholar 

  20. Siddiquee, M.R., et al.: Learning fixed points in generative adversarial networks: from image-to-image translation to disease detection and localization. In: ICCV, pp. 191–200 (2019)

    Google Scholar 

  21. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: ICLR (2014)

    Google Scholar 

  22. Simpson, A., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. ArXiv arXiv:1902.09063 (2019)

  23. Singla, S., Pollack, B., Chen, J., Batmanghelich, K.: Explanation by progressive exaggeration. In: ICLR (2020)

    Google Scholar 

  24. Smilkov, D., Thorat, N., Kim, B., Viégas, F.B., Wattenberg, M.: Smoothgrad: removing noise by adding noise. ArXiv arXiv:1706.03825 (2017)

  25. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A.: Striving for simplicity: the all convolutional net. In: ICLR (2015). arXiv:1412.6806

  26. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: ICML (2017)

    Google Scholar 

  27. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: CVPR (2017)

    Google Scholar 

  28. Woods, W., Chen, J., Teuscher, C.: Adversarial explanations for understanding image classification decisions and improved neural network robustness. Nat. Mach. Intell. 1 (2019)

    Google Scholar 

  29. Xu, S.Z., Venugopalan, S., Sundararajan, M.: Attribution in scale and space. In: CVPR (2020)

    Google Scholar 

  30. Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR (2016)

    Google Scholar 

  31. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Charachon, M., Cournède, PH., Hudelot, C., Ardon, R. (2021). Visual Explanation by Unifying Adversarial Generation and Feature Importance Attributions. In: Reyes, M., et al. Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data. IMIMIC TDA4MedicalData 2021 2021. Lecture Notes in Computer Science(), vol 12929. Springer, Cham. https://doi.org/10.1007/978-3-030-87444-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87444-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87443-8

  • Online ISBN: 978-3-030-87444-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics