Skip to main content

Towards Taming the Adaptivity Problem

Formalizing Poly-/MultiStore Topology Descriptions

  • Conference paper
  • First Online:
Service-Oriented Computing (SummerSOC 2021)

Abstract

Systems following the Polyglot Persistence paradigm are on the rise and with them come new problems and challenges. A major challenge is the ability to automatically self-adapt to changing requirements and workloads. The most difficult and as yet rarely discussed form of adaptivity relates to cahanges to the underlying data composition and topology. The search for a topology suited best for a given set of requirements can be modelled as a complex optimization problem.

This paper proposes and formalizes Blueprints, which we define as graphs representing functional units composed of (heterogeneous) data stores. Blueprints can be used as manageable, predefined building blocks to form the highly complex system topologies Poly- and MultiStores use internally. Subsequently, the optimization search space can be limited to a set of Blueprints, which can be matched against the Poly-/MultiStores’ requirements. Furthermore, we discuss System requirements and their impact on adaptivity decisions and identify future research directions building upon our Blueprint concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html.

  2. 2.

    https://www.oasis-open.org/.

  3. 3.

    https://kubernetes.io/.

  4. 4.

    https://www.chef.io/.

  5. 5.

    https://www.ansible.com/.

  6. 6.

    https://puppet.com/.

  7. 7.

    https://www.terraform.io/.

  8. 8.

    https://hazelcast.com/.

  9. 9.

    https://github.com/kubesphere/porterlb.

  10. 10.

    https://kubernetes.io/docs/concepts/services-networking/ingress.

  11. 11.

    https://prometheus.io/.

  12. 12.

    https://www.jaegertracing.io/.

  13. 13.

    https://zookeeper.apache.org/.

  14. 14.

    https://istio.io/.

  15. 15.

    https://linkerd.io/.

References

  1. Agrawal, D., et al.: Rheem: enabling multi-platform task execution. In: Proceedings of the 2016 International Conference on Management of Data, SIGMOD 2016, pp. 2069–2072. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2882903.2899414

  2. Alotaibi, R., Bursztyn, D., Deutsch, A., Manolescu, I., Zampetakis, S.: Towards scalable hybrid stores: constraint-based rewriting to the rescue. In: Proceedings of the 2019 International Conference on Management of Data, SIGMOD 2019, pp. 1660–1677. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3299869.3319895

  3. Borg, A., Yong, A., Carlshamre, P., Sandahl, K.: The bad conscience of requirements engineering: an investigation in real-world treatment of non-functional requirements. In: Third Conference on Software Engineering Research and Practice in Sweden, pp. 1–8 (2003)

    Google Scholar 

  4. Broy, M.: Rethinking nonfunctional software requirements. IEEE Ann. Hist. Comput. 48(05), 96–99 (2015). https://doi.org/10.1109/MC.2015.139

  5. Chung, L., do Prado Leite, J.C.S.: On non-functional requirements in software engineering. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 363–379. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02463-4_19

    Chapter  Google Scholar 

  6. DeWitt, D.J., et al.: Split query processing in polybase. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, pp. 1255–1266. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2463676.2463709

  7. Duggan, J., et al.: The BigDAWG polystore system. ACM SIGMOD Rec. 44(2), 11–16 (2015)

    Article  Google Scholar 

  8. Gadepally, V., et al.: The BigDAWG polystore system and architecture. In: 2016 IEEE High Performance Extreme Computing Conference (HPEC), New York, USA, pp. 1–6. IEEE (2016). https://doi.org/10.1109/CSC.2011.6138543

  9. Gessert, F., Friedrich, S., Wingerath, W., Schaarschmidt, M., Ritter, N.: Towards a scalable and unified rest API for cloud data stores. In: 44. Jahrestagung der Gesellschaft für Informatik, Informatik 2014, Big Data - Komplexität meistern, 22.-26. September 2014 in Stuttgart, Deutschland, vol. 232, pp. 723–734. GI Bonn (2014). https://dl.gi.de/20.500.12116/2975

  10. Gessert, F., Wingerath, W., Friedrich, S., Ritter, N.: NoSQL database systems: a survey and decision guidance. CSRD 32(3), 353–365 (2017)

    Google Scholar 

  11. Giannakouris, V., Papailiou, N., Tsoumakos, D., Koziris, N.: Musqle: Distributed SQL query execution over multiple engine environments. In: 2016 IEEE International Conference on Big Data (Big Data), New York, USA, pp. 452–461. IEEE (2016). https://doi.org/10.1109/BigData.2016.7840636

  12. Glinz, M.: On non-functional requirements. In: 15th IEEE International Requirements Engineering Conference (RE 2007), pp. 21–26. IEEE (2007). https://doi.org/10.1109/RE.2007.45

  13. Gross, D., Yu, E.: From non-functional requirements to design through patterns. Requirements Eng. 6(1), 18–36 (2001). https://doi.org/10.1007/s007660170013

  14. Kolev, B., Bondiombouy, C., Valduriez, P., Jimenez-Peris, R., Pau, R., Pereira, J.: The CloudMdsQL multistore system. In: Proceedings of the 2016 International Conference on Management of Data, SIGMOD 2016, pp. 2113–2116. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2882903.2899400

  15. Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Techniques. Wiley, Hoboken (1998)

    Google Scholar 

  16. Lash, A., Murray, K., Mocko, G.: Natural language processing applications in requirements engineering. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 45011, pp. 541–549. American Society of Mechanical Engineers (2012). https://doi.org/10.1115/DETC2012-71084

  17. Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ semi-structured data model and query language: a capabilities survey of SQL-on-Hadoop, NoSQL and NewSQL databases. CoRR abs/1405.3631 (2014). https://arxiv.org/abs/1405.3631

  18. Roman, G.C.: A taxonomy of current issues in requirements engineering. IEEE Ann. Hist. Comput. 18(04), 14–23 (1985). https://doi.org/10.1109/MC.1985.1662861

  19. Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence. Pearson Education, Boston (2012). https://books.google.com/books?id=AyY1a6-k3PIC

  20. Schaarschmidt, M., Gessert, F., Ritter, N.: Towards automated polyglot persistence. In: Seidl, T., Ritter, N., Schöning, H., Sattler, K., Härder, T., Friedrich, S., Wingerath, W. (eds.) Proceedings of the 2015 German National Database Conference (BTW 2015). LNI, Bonn, Germany, vol. P-241, pp. 73–82. GI (2015). https://subs.emis.de/LNI/Proceedings/Proceedings241/article46.html

  21. Serafini, M., Taft, R., Elmore, A.J., Pavlo, A., Aboulnaga, A., Stonebraker, M.: Clay: fine-grained adaptive partitioning for general database schemas. Proc. VLDB Endow. 10(4), 445–456 (2016). https://doi.org/10.14778/3025111.3025125

  22. Standard, O.: Topology and orchestration specification for cloud applications version 1.0 (2013)

    Google Scholar 

  23. Stonebraker, M., et al.: One size fits all? part 2: benchmarking studies. In: Third Biennial Conference on Innovative Data Systems Research (CIDR 2007), CIDR Conference, Asilomar, California, USA, pp. 173–184 (2007). http://cidrdb.org/cidr2007/papers/cidr07p20.pdf

  24. Stonebraker, M., Çetintemel, U.: “one size fits all”: an idea whose time has come and gone (abstract). In: Aberer, K., Franklin, M.J., Nishio, S. (eds.) Proceedings of the 21st International Conference on Data Engineering, ICDE 2005, Washington, DC, USA, pp. 2–11. IEEE (2005). https://doi.org/10.1109/ICDE.2005.1

  25. Tan, R., Chirkova, R., Gadepally, V., Mattson, T.G.: Enabling query processing across heterogeneous data models: a survey. In: 2017 IEEE International Conference on Big Data (Big Data), New York, USA, pp. 3211–3220. IEEE (2017). https://doi.org/10.1109/BigData.2017.8258302

  26. Vogt, M., Stiemer, A., Schuldt, H.: Polypheny-DB: towards a distributed and self-adaptive polystore. In: 2018 IEEE International Conference on Big Data (Big Data), New York, USA, pp. 3364–3373. IEEE (2018). https://doi.org/10.1109/BigData.2018.8622353

  27. Walden, D.D., Roedler, G.J., Forsberg, K.: INCOSE systems engineering handbook version 4: updating the reference for practitioners. In: INCOSE International Symposium, vol. 25, pp. 678–686. Wiley Online Library (2015). https://doi.org/10.1002/j.2334-5837.2015.00089.x

  28. Wang, J., et al.: The Myria big data management and analytics system and cloud services. In: 8th Biennial Conference on Innovative Data Systems Research (CIDR 2017). CIDR Conference, Asilomar, California, USA (2017). http://cidrdb.org/cidr2017/papers/p37-wang-cidr17.pdf

  29. Zhu, M., Risch, T.: Querying combined cloud-based and relational databases. In: 2011 International Conference on Cloud and Service Computing, New York, USA, pp. 330–335. IEEE (2011). https://doi.org/10.1109/CSC.2011.6138543

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Kiehn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glake, D., Kiehn, F., Schmidt, M., Ritter, N. (2021). Towards Taming the Adaptivity Problem. In: Barzen, J. (eds) Service-Oriented Computing. SummerSOC 2021. Communications in Computer and Information Science, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-030-87568-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87568-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87567-1

  • Online ISBN: 978-3-030-87568-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics